这题有离线和在线两种做法。

    离线:将查询区间按左端点排序,预处理出所有数下一次的出现位置,一开始将所有第一次出现的数a[i]++,之后当扫到这个数的时候a[next[i]]++,相当于差分,给之后的位置答案+1,因为查询区间左端点排序了,所以再也查不到当前点,这个数对答案有贡献的区间只有右端点在这个数下一次出现的位置右边的区间,当扫到查询区间左端点时当前答案为sum(r)-sum(l-1)。

#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cmath>
#include<map>
#define ll long long
using namespace std;
const int maxn=,inf=1e9;
struct poi{int l,r,pos;}q[maxn];
int n,m,x,y,z,tot,N;
int tree[maxn],a[maxn],b[maxn],ans[maxn],next[maxn],pre[maxn];
bool v[maxn];
inline void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
inline bool cmp(poi a,poi b){return a.l<b.l;}
inline int lowbit(int x){return x&-x;};
inline void add(int x){for(;x<=n;x+=lowbit(x))tree[x]++;}
inline int query(int x){int sum=;for(;x;x-=lowbit(x))sum+=tree[x];return sum;}
int main()
{
read(n);
for(int i=;i<=n;i++)read(a[i]),b[i]=a[i];N=n;
sort(b+,b++N);N=unique(b+,b++N)-b-;
for(int i=;i<=n;i++)a[i]=lower_bound(b+,b++N,a[i])-b;
for(int i=n;i;i--)next[i]=pre[a[i]],pre[a[i]]=i;
for(int i=;i<=n;i++)
if(!v[a[i]])add(i),v[a[i]]=;
read(m);
for(int i=;i<=m;i++)
{
read(q[i].l);read(q[i].r);
q[i].l--;q[i].pos=i;
}
sort(q+,q++m,cmp);
for(int i=,j=;i<=n&&j<=m;i++)
{
if(next[i])add(next[i]);
while(j<=m)
{
if(q[j].l!=i)break;
ans[q[j].pos]=query(q[j].r)-query(q[j].l);
j++;
}
}
for(int i=;i<=m;i++)printf("%d\n",ans[i]);
return ;
}

    在线:预处理出所有数上一次出现的位置,把问题转化成查询区间里有多少数last[i]<l,这显然可以用主席树了

#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cmath>
#include<map>
#define ll long long
using namespace std;
const int maxn=,inf=1e9;
struct poi{int sum,lt,rt;}tree[maxn*];
int n,m,l,r,sz,N;
int root[maxn],pre[maxn],last[maxn],a[maxn],b[maxn];
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
void update(int &x,int l,int r,int cx)
{
tree[++sz]=tree[x];tree[sz].sum++;x=sz;
if(l==r)return;
int mid=(l+r)>>;
if(cx<=mid)update(tree[x].lt,l,mid,cx);
else update(tree[x].rt,mid+,r,cx);
}
int query(int x,int y,int l,int r,int cl,int cr)
{
if(cl<=l&&r<=cr)return tree[y].sum-tree[x].sum;
int mid=(l+r)>>,ret=;
if(cl<=mid)ret+=query(tree[x].lt,tree[y].lt,l,mid,cl,cr);
if(cr>mid)ret+=query(tree[x].rt,tree[y].rt,mid+,r,cl,cr);
return ret;
}
int main()
{
read(n);
for(int i=;i<=n;i++)read(a[i]),b[i]=a[i];N=n;
sort(b+,b++N);N=unique(b+,b++N)-b-;
for(int i=;i<=n;i++)a[i]=lower_bound(b+,b++N,a[i])-b;
for(int i=;i<=n;i++)pre[i]=last[a[i]],last[a[i]]=i;
for(int i=;i<=n;i++)update(root[i]=root[i-],,n,pre[i]);
read(m);
for(int i=;i<=m;i++)
{
read(l);read(r);
printf("%d\n",query(root[l-],root[r],,n,,l-));
}
}

bzoj1878: [SDOI2009]HH的项链(主席树/离线+BIT)的更多相关文章

  1. [bzoj1878][SDOI2009]HH的项链_树状数组

    HH的项链 bzoj-1878 SDOI-2009 题目大意:给定一个n个数的序列,m次查询.查询区间数的种类个数. 注释:$1\le n \le 5\cdot 10^4$,$1\le m\le 2\ ...

  2. [BZOJ1878][SDOI2009] HH的项链 (树状数组)

    link 一道简单题. 不用可持久化. 对于统计颜色个数,可以看与其颜色一样的前一个位置. 设$las(i)$表示其与$i$颜色相等的上一个位置. 则对于二元组$(l,r)$,其答案为$\sum_{i ...

  3. BZOJ1878 SDOI2009 HH的项链 【莫队】

    BZOJ1878 SDOI2009 HH的项链 Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的 ...

  4. BZOJ1878: [SDOI2009]HH的项链 (离线查询+树状数组)

    1878: [SDOI2009]HH的项链 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1878 Description: HH有一串由 ...

  5. bzoj千题计划181:bzoj1878: [SDOI2009]HH的项链

    http://www.lydsy.com/JudgeOnline/problem.php?id=1878 之前用莫队做的,现在用树状数组 把每种数的第一个出现位置在树状数组中+1 nxt[i] 记录i ...

  6. BZOJ1878: [SDOI2009]HH的项链[树状数组+离线 | 主席树]

    题意: 询问区间不同种类颜色数 [2016-11-15] 离线好厉害 对于每一个区间询问,一个数只考虑一次,那么考虑他最后出现的一次 将询问按r排序 从1到n扫描,用树状数组维护一个位置应不应该考虑( ...

  7. BZOJ1878: [SDOI2009]HH的项链[树状数组 离线]

    1878: [SDOI2009]HH的项链 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 3486  Solved: 1738[Submit][Statu ...

  8. BZOJ1878 [SDOI2009] HH的项链 [莫队,卡常]

    BZOJ传送门,洛谷传送门 HH的项链 Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一 段贝壳,思考它们所表达的含义. ...

  9. [bzoj1878][SDOI2009]HH的项链_莫队

    HH 的项链 bzoj-1878 SDOI-2009 题目大意:给定一个n个数的序列.m次询问,每次询问一段区间内数的种类数. 注释:$1\le n\le 5\cdot 10^4$,$1\le m\l ...

随机推荐

  1. VS2015 更改C++模式

    亲爱的小伙伴,有没有发现你们的VS2015装完以后和老江湖们用的不一样了,人家的界面打开是这样的 而你的界面打开是这样的 虽然看是只有一左一右的区别,但是内在确实有好多不一样. 想不想想老江湖一样,拥 ...

  2. 第六阶段·数据库MySQL及NoSQL实践 第2章·Redis

    01-Redis简介 02-Redis基本安装启动 03-Redis的配置文件基本使用 04-Redis安全管理 05-Redis安全持久化-RDB持久化 06-Redis安全持久化-AOF持久化 0 ...

  3. TPO-15 C1 The campus newspaper's reporter position

    TPO-15 C1 The campus newspaper's reporter position 第 1 段 1.Listen to a conversation between a Studen ...

  4. ubuntu 18.04 LTS server系统安装失败问题解决

    准备自己搭一个服务器,USB引导盘的方式安装ubutun系统. 中途遇到两个问题,导致耗时比较久,记录如下. 问题一: installing system阶段卡主 具体描述: 配置镜像源地址以后,进入 ...

  5. LeetCode 142——环形链表 II

    1. 题目 2. 解答 2.1 方法 1 定义快慢两个指针,慢指针每次前进一步,快指针每次前进两步,若链表有环,则快慢指针一定会相遇. 当快慢指针相遇时,我们让慢指针指向头节点,快指针不变,然后每次快 ...

  6. Linux中常用的关机和重新启动命令

    hutdown.halt.reboot以及init,它们都可以达到关机和重新启动的目的,但是每个命令的内部工作过程是不同的,下面将逐一进行介绍. 一.shutdown shutdown命令用于安全关闭 ...

  7. Thunder团队第二周 - Scrum会议1

    Scrum会议1 小组名称:Thunder 项目名称:爱阅app Scrum Master:王航 工作照片: 参会成员: 王航(Master):http://www.cnblogs.com/wangh ...

  8. Java接口与继承作业

    为什么子类的构造方法在运行之前,必须调用父类的构造方法?能不能反过来?为什么不能反过来? 因为子类继承了父类,那么就默认的含有父类的公共成员方法和公共成员变量,这些方法和变量在子类里不再重复声明.如果 ...

  9. Android 上实现非root的 Traceroute -- 非Root权限下移植可执行二进制文件 脚本文件

    作者 : 万境绝尘 转载请著名出处 : http://blog.csdn.net/shulianghan/article/details/36438365 示例代码下载 : -- CSDN : htt ...

  10. LintCode-376.二叉树的路径和

    二叉树的路径和 给定一个二叉树,找出所有路径中各节点相加总和等于给定 目标值 的路径. 一个有效的路径,指的是从根节点到叶节点的路径. 样例 给定一个二叉树,和 目标值 = 5: 返回: [      ...