Number String

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1935    Accepted Submission(s): 931

Problem Description
The signature of a permutation is a string that is computed as follows: for each pair of consecutive elements of the permutation, write down the letter 'I' (increasing) if the second element is greater than the first one, otherwise write down the letter 'D' (decreasing). For example, the signature of the permutation {3,1,2,7,4,6,5} is "DIIDID".

Your task is as follows: You are given a string describing the signature of many possible permutations, find out how many permutations satisfy this signature.

Note: For any positive integer n, a permutation of n elements is a sequence of length n that contains each of the integers 1 through n exactly once.

 
Input
Each test case consists of a string of 1 to 1000 characters long, containing only the letters 'I', 'D' or '?', representing a permutation signature.

Each test case occupies exactly one single line, without leading or trailing spaces.

Proceed to the end of file. The '?' in these strings can be either 'I' or 'D'.

 
Output
For each test case, print the number of permutations satisfying the signature on a single line. In case the result is too large, print the remainder modulo 1000000007.
 
Sample Input
II
ID
DI
DD
?D
??
 
Sample Output
1
2
2
1
3
6

Hint

Permutation {1,2,3} has signature "II".
Permutations {1,3,2} and {2,3,1} have signature "ID".
Permutations {3,1,2} and {2,1,3} have signature "DI".
Permutation {3,2,1} has signature "DD".
"?D" can be either "ID" or "DD".
"??" gives all possible permutations of length 3.

 
Author
HONG, Qize

基础dp
 
字符串长度为n,则有(n+1)个数字组成排列。
dp[i][j]代表长度为i末位为j的符合题意的全排列总数,所以这样的排列内没有大于i的数。
显然dp[1][1]=1;
对于i>1,若对应的字符为‘I’,那么$dp[i][j]=\sum_{k=1}^{j-1}dp[i-1][k]$,这个显而易见。
若对应的字符为'D',那么$dp[i][j]=\sum_{k=j}^{i-1}dp[i-1][k]$,这个其实相当于在i位置放入j以后,把i全排列中i-1及之前的位置大于j的数字+1,构成新的排列。
那么对应的字符为“?”,则是把上两种情况综合,$dp[i][j]=\sum_{k=1}^{i-1}dp[i-1][k]$,显而易见。
 #include<cstdio>
#include<iostream>
#include<cstring>
#define clr(x) memset(x,0,sizeof(x))
#define LL long long
#define mod 1000000007
using namespace std;
LL dp[][],ans;
char s[];
int main()
{
while(scanf("%s",s)!=EOF)
{
dp[][]=;
for(int i=;i<=strlen(s)+;i++)
{
if(s[i-]=='I')
{
dp[i][]=;
for(int j=;j<=i;j++)
dp[i][j]=(dp[i][j-]+dp[i-][j-])%mod;
}
if(s[i-]=='D')
{
dp[i][i]=;
for(int j=i-;j>=;j--)
dp[i][j]=(dp[i][j+]+dp[i-][j])%mod;
}
if(s[i-]=='?')
{
dp[i][]=;
for(int j=;j<=i-;j++)
dp[i][]=(dp[i][]+dp[i-][j])%mod;
for(int j=;j<=i;j++)
dp[i][j]=dp[i][j-];
}
}
ans=;
for(int i=;i<=strlen(s)+;i++)
ans=(ans+dp[strlen(s)+][i])%mod;
printf("%lld\n",ans);
}
return ;
}

hdu 4055 Number String (基础dp)的更多相关文章

  1. hdu 4055 Number String(dp)

    Problem Description The signature of a permutation is a string that is computed as follows: for each ...

  2. HDU 4055 Number String (计数DP)

    题意:由数字1到n组成的所有排列中,问满足题目所给的n-1个字符的排列有多少个,如果第i字符是‘I’表示排列中的第i-1个数是小于第i个数的. 如果是‘D’,则反之. 析:dp[i][j] 表示前 i ...

  3. HDU 4055 Number String dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4055 Number String Time Limit: 10000/5000 MS (Java/O ...

  4. hdu 4055 Number String(有点思维的DP)

    Number String Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  5. hdu 4055 Number String

    Number String http://acm.hdu.edu.cn/showproblem.php?pid=4055 Time Limit: 10000/5000 MS (Java/Others) ...

  6. HDU 4055 Number String:前缀和优化dp【增长趋势——处理重复选数】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4055 题意: 给你一个由'I', 'D', '?'组成的字符串,长度为n,代表了一个1~n+1的排列中 ...

  7. HDU 4055 Number String(DP计数)

    题意: 给你一个含n个字符的字符串,字符为'D'时表示小于号,字符为“I”时表示大于号,字符为“?”时表示大小于都可以.比如排列 {3, 1, 2, 7, 4, 6, 5} 表示为字符串 DIIDID ...

  8. hdu 4055 Number String(递推DP)

    给一个只含‘I','D','?'三种字符的字符串,I表示当前数字大于前面的数字,D表示当前的数字小于前面一位的数字,?表示当前位既可以小于又可以大于. 问1~n的排列中有多少个满足该字符串. http ...

  9. HDU 4054 Number String

    HDU 4054 Number String 思路: 状态:dp[i][j]表示以j结尾i的排列 状态转移: 如果s[i - 1]是' I ',那么dp[i][j] = dp[i-1][j-1] + ...

随机推荐

  1. NGINX: Primary script unknown

    参考: [ StackExchange ] 这里的解决方式应该是你排查了所有原因依然无法解决问题. SELINUX 更改 selinux 配置 chcon -R -t httpd_sys_conten ...

  2. Vue 使用中的小技巧(山东数漫江湖)

    在vue的使用过程中会遇到各种场景,当普通使用时觉得没什么,但是或许优化一下可以更高效更优美的进行开发.下面有一些我在日常开发的时候用到的小技巧,在下将不定期更新~ 1. 多图表resize事件去中心 ...

  3. A Simple Math Problem(矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 思路:矩阵快速幂模板题,不过因为刚刚入门矩阵快速幂,所以经常把数组f存反,导致本地错误一晚,差点 ...

  4. 2009 Round2 A Crazy Rows (模拟)

    Problem You are given an N x N matrix with 0 and 1 values. You can swap any two adjacent rows of the ...

  5. php中的base64写shell

    <?php system(base64_decode($_GET['info'])); #http://localhost/1.php?info=d2hvYW1p #这只是一个例子 ?>

  6. LINUX中断学习笔记【转】

    转自:http://blog.chinaunix.net/uid-14825809-id-2381330.html 1.中断的注册与释放: 在 , 实现中断注册接口: int request_irq( ...

  7. $(document).ready 和 window.onload 的区别

    1.相同点 两者都用于在网页加载完后执行相应代码块. 2.不同点 window.onload 在创建完 DOM 树后,所有外部资源(图片.Flash 动画等)加载完成,且整个页面在浏览器窗口中显示完毕 ...

  8. python基础===字符串的制表,换行基础操作

    \n\t 制表符和换行符 >>> print("Languages:\n\tPython\n\tC\n\tJavaScript") Languages: Pyth ...

  9. python多进程处理数据

    当我们处理大规模数据如ImageNet的时候,单进程显得很吃力耗时,且不能充分利用多核CPU计算机的资源.因此需要使用多进程对数据进行并行处理,然后将结果合并即可.以下给出的是多进程处理的demo代码 ...

  10. [New learn] 网络基础-apache本地服务搭建(支持php)

    1.简介 无网不利,无网不胜.对于移动应用来说离开网络那和咸鱼有什么分别?所以对于开发者来说更要学习好网络开发的技术. 2.搭建apache本地服务器 1.在finder中显示影藏的用户文件夹 fin ...