HDU 1069 Monkey and Banana (dp)
Problem Description
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.
The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.
They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.
Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.
Input
The input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.
Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
分析:
题目倒是不难!对于动态规划的题,我觉得最重要的就是找出所谓的递归方程吧!
这点最为重要!找到了递归方程,代码实现只是时间问题罢了!
这道题目有一些要点要抓住!
1,下一层的面积要严格大于上一层!我在这里错了几次!所谓严格大于,那就是下一层的长宽都大于下一层的长宽或宽长,等于都不行!
2,这道问题比较像01背包问题!我用的方法是拆分!即将一种block拆成3种!(一种block有三种摆放姿势,且一种block最多放这三种姿势)这样,先按照面积排序!然后再次动归!可以减少时间复杂度!
3,hdp[i]表示如果以第i块block为顶,最多可以达到的高度!
代码:
#include<iostream>
#include<stdio.h>
#include <algorithm>
using namespace std;
typedef struct Block
{
int x,y,high,dp;
};
bool cmp(Block a,Block b)
{
if(a.x<b.x)
return 1;
else if(a.x==b.x&&a.y<a.y)
return 1;
return 0;
}
int max(int a,int b)
{
return a>b?a:b;
}
Block b[1000];
int main()
{
int x,y,z,n,i,j,k,Max,p=0;
while(~scanf("%d",&n)&&n)
{
p++;
k=0;
while(n--)
{
scanf("%d%d%d",&x,&y,&z);
if(x==y)
{
if(y==z)
{
b[k].x=x;
b[k].y=x;
b[k].high=x;
b[k++].dp=x;
}
else
{
b[k].x=b[k].y=x;
b[k].high=z;
b[k++].dp=z;
b[k].x=x;
b[k].y=z;
b[k].high=x;
b[k++].dp=x;
b[k].x=z;
b[k].y=x;
b[k].high=x;
b[k++].dp=x;
}
}
else
{
if(x==z)
{
b[k].x=b[k].y=x;
b[k].high=y;
b[k++].dp=y;
b[k].x=x;
b[k].y=y;
b[k].high=x;
b[k++].dp=x;
b[k].x=y;
b[k].y=x;
b[k].high=x;
b[k++].dp=x;
}
else if(y==z)
{
b[k].x=b[k].y=y;
b[k].high=x;
b[k++].dp=x;
b[k].x=x;
b[k].y=y;
b[k].high=y;
b[k++].dp=y;
b[k].x=y;
b[k].y=x;
b[k].high=y;
b[k++].dp=y;
}
else
{
b[k].x=x;
b[k].y=y;
b[k].high=z;
b[k++].dp=z;
b[k].x=x;
b[k].y=z;
b[k].high=y;
b[k++].dp=y;
b[k].x=y;
b[k].y=x;
b[k].high=z;
b[k++].dp=z;
b[k].x=y;
b[k].y=z;
b[k].high=x;
b[k++].dp=x;
b[k].x=z;
b[k].y=x;
b[k].high=y;
b[k++].dp=y;
b[k].x=z;
b[k].y=y;
b[k].high=x;
b[k++].dp=x;
}
}
sort(b,b+k,cmp);
Max=0;
for(i=0; i<k; i++)
{
for(j=0; j<i; j++)
if(b[i].x>b[j].x&&b[i].y>b[j].y)
b[i].dp=max((b[j].dp+b[i].high),b[i].dp);
Max=max(b[i].dp,Max);
}
}
printf("Case %d: maximum height = %d\n",p,Max);
}
return 0;
}
HDU 1069 Monkey and Banana (dp)的更多相关文章
- HDU 1069 Monkey and Banana ——(DP)
简单DP. 题意:给出若干种长方体,如果摆放时一个长方体的长和宽小于另一个的长宽,那么它可以放在另一个的上面,问最高能放多少高度.每种长方体的个数都是无限的. 做法:因为每种个数都是无限,那么每种按照 ...
- HDU 1069 Monkey and Banana(动态规划)
Monkey and Banana Problem Description A group of researchers are designing an experiment to test the ...
- HDU 1069 Monkey and Banana(DP——最大递减子序列)
题目链接: http://acm.split.hdu.edu.cn/showproblem.php?pid=1069 题意描述: 给n块砖,给出其长,宽和高 问将这n块砖,怎样叠放使得满足以下条件使得 ...
- HDU 1069 Monkey and Banana (动态规划)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 简单记录一下 思路:把长方体的各种摆法都存到数组里面,然后按照长宽排序,再dp即可 转移方程 d ...
- HDU 1069 Monkey and Banana(转换成LIS,做法很值得学习)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS (Java ...
- HDU 1069:Monkey and Banana(DP)
Monkey and Banana Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1069 Monkey and Banana(二维偏序LIS的应用)
---恢复内容开始--- Monkey and Banana Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...
- HDU 1069 Monkey and Banana (动态规划、上升子序列最大和)
Monkey and Banana Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1069 Monkey and Banana 基础DP
题目链接:Monkey and Banana 大意:给出n种箱子的长宽高.每种不限个数.可以堆叠.询问可以达到的最高高度是多少. 要求两个箱子堆叠的时候叠加的面.上面的面的两维长度都严格小于下面的. ...
随机推荐
- 3dContactPointAnnotationTool开发日志(一)
周日毕设开题报告结束后浪了一天,今天又要开始回归正轨了.毕设要做一个人和物体的接触点标注工具,听上去好像没啥难度,其实实现起来还是挺麻烦的. 今天没做啥,就弄了个3d场景做样例.把界面搭了一下 ...
- 3ds Max学习日记(九)
添加了几根线条,又跟着教程细扣了一下面部细节,并把鼻子做的更细致了一些,如图: 又做了好久,按着教程抠出了眼睛和嘴,感觉自己做的模型就跟鬼似的... 做了下头发,看了下视频最后,并没教如何 ...
- QT分析之网络编程
原文地址:http://blog.163.com/net_worm/blog/static/127702419201002842553382/ 首先对Windows下的网络编程总结一下: 如果是服务器 ...
- SpringMVC的工作流程-005
1.用户发送请求至前端控制器DispatcherServlet 2.DispatcherServlet收到请求调用HandlerMapping处理器映射器. 3. ...
- jquery计算器(改良版)
代码: <!Doctype html> <html> <meta charset="UTF-8"> <title>计算器</t ...
- MVC 上传文件实例
http://www.cnblogs.com/leiOOlei/archive/2011/08/17/2143221.html
- javaBean默认接受request发送过来的数据,根据键自动设置属性
javaBean默认接受request发送过来的数据,根据键自动设置属性
- HUAS 1482 lsy的后宫(DP+矩阵快速幂)
这道题的DP是很好想的,令dp[i][j]表示第i个位置摆第j种妹子的方法数,j为0表示不摆妹子的方法数. dp[i][j]=sigma(dp[i-1][k])(s[j][k]!='1').容易看出这 ...
- 前台界面(2)---CSS 样式
目录 1. 内联样式 2. 层叠样式表CSS 2.1. 类选择器 2.1.1. 颜色设置 2.1.2. 字号设置 2.1.3. CSS边框属性 2.1.4. 设置背景颜色 2.1.5. 设置布局边框 ...
- CentOS 转义字符
常用转义字符 反斜杠(\):使反斜杠后面的一个变量变为单纯的字符串. 单引号(''):转义其中所有的变量为单纯的字符串. 双引号(""):保留其中的变量属性,不进行转义处理. 反引 ...