HDU 1069 Monkey and Banana (dp)
Problem Description
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.
The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.
They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.
Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.
Input
The input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.
Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
分析:
题目倒是不难!对于动态规划的题,我觉得最重要的就是找出所谓的递归方程吧!
这点最为重要!找到了递归方程,代码实现只是时间问题罢了!
这道题目有一些要点要抓住!
1,下一层的面积要严格大于上一层!我在这里错了几次!所谓严格大于,那就是下一层的长宽都大于下一层的长宽或宽长,等于都不行!
2,这道问题比较像01背包问题!我用的方法是拆分!即将一种block拆成3种!(一种block有三种摆放姿势,且一种block最多放这三种姿势)这样,先按照面积排序!然后再次动归!可以减少时间复杂度!
3,hdp[i]表示如果以第i块block为顶,最多可以达到的高度!
代码:
#include<iostream>
#include<stdio.h>
#include <algorithm>
using namespace std;
typedef struct Block
{
int x,y,high,dp;
};
bool cmp(Block a,Block b)
{
if(a.x<b.x)
return 1;
else if(a.x==b.x&&a.y<a.y)
return 1;
return 0;
}
int max(int a,int b)
{
return a>b?a:b;
}
Block b[1000];
int main()
{
int x,y,z,n,i,j,k,Max,p=0;
while(~scanf("%d",&n)&&n)
{
p++;
k=0;
while(n--)
{
scanf("%d%d%d",&x,&y,&z);
if(x==y)
{
if(y==z)
{
b[k].x=x;
b[k].y=x;
b[k].high=x;
b[k++].dp=x;
}
else
{
b[k].x=b[k].y=x;
b[k].high=z;
b[k++].dp=z;
b[k].x=x;
b[k].y=z;
b[k].high=x;
b[k++].dp=x;
b[k].x=z;
b[k].y=x;
b[k].high=x;
b[k++].dp=x;
}
}
else
{
if(x==z)
{
b[k].x=b[k].y=x;
b[k].high=y;
b[k++].dp=y;
b[k].x=x;
b[k].y=y;
b[k].high=x;
b[k++].dp=x;
b[k].x=y;
b[k].y=x;
b[k].high=x;
b[k++].dp=x;
}
else if(y==z)
{
b[k].x=b[k].y=y;
b[k].high=x;
b[k++].dp=x;
b[k].x=x;
b[k].y=y;
b[k].high=y;
b[k++].dp=y;
b[k].x=y;
b[k].y=x;
b[k].high=y;
b[k++].dp=y;
}
else
{
b[k].x=x;
b[k].y=y;
b[k].high=z;
b[k++].dp=z;
b[k].x=x;
b[k].y=z;
b[k].high=y;
b[k++].dp=y;
b[k].x=y;
b[k].y=x;
b[k].high=z;
b[k++].dp=z;
b[k].x=y;
b[k].y=z;
b[k].high=x;
b[k++].dp=x;
b[k].x=z;
b[k].y=x;
b[k].high=y;
b[k++].dp=y;
b[k].x=z;
b[k].y=y;
b[k].high=x;
b[k++].dp=x;
}
}
sort(b,b+k,cmp);
Max=0;
for(i=0; i<k; i++)
{
for(j=0; j<i; j++)
if(b[i].x>b[j].x&&b[i].y>b[j].y)
b[i].dp=max((b[j].dp+b[i].high),b[i].dp);
Max=max(b[i].dp,Max);
}
}
printf("Case %d: maximum height = %d\n",p,Max);
}
return 0;
}
HDU 1069 Monkey and Banana (dp)的更多相关文章
- HDU 1069 Monkey and Banana ——(DP)
简单DP. 题意:给出若干种长方体,如果摆放时一个长方体的长和宽小于另一个的长宽,那么它可以放在另一个的上面,问最高能放多少高度.每种长方体的个数都是无限的. 做法:因为每种个数都是无限,那么每种按照 ...
- HDU 1069 Monkey and Banana(动态规划)
Monkey and Banana Problem Description A group of researchers are designing an experiment to test the ...
- HDU 1069 Monkey and Banana(DP——最大递减子序列)
题目链接: http://acm.split.hdu.edu.cn/showproblem.php?pid=1069 题意描述: 给n块砖,给出其长,宽和高 问将这n块砖,怎样叠放使得满足以下条件使得 ...
- HDU 1069 Monkey and Banana (动态规划)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 简单记录一下 思路:把长方体的各种摆法都存到数组里面,然后按照长宽排序,再dp即可 转移方程 d ...
- HDU 1069 Monkey and Banana(转换成LIS,做法很值得学习)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS (Java ...
- HDU 1069:Monkey and Banana(DP)
Monkey and Banana Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1069 Monkey and Banana(二维偏序LIS的应用)
---恢复内容开始--- Monkey and Banana Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...
- HDU 1069 Monkey and Banana (动态规划、上升子序列最大和)
Monkey and Banana Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1069 Monkey and Banana 基础DP
题目链接:Monkey and Banana 大意:给出n种箱子的长宽高.每种不限个数.可以堆叠.询问可以达到的最高高度是多少. 要求两个箱子堆叠的时候叠加的面.上面的面的两维长度都严格小于下面的. ...
随机推荐
- TCP系列02—连接管理—1、三次握手与四次挥手
一.TCP连接管理概述 正如我们在之前所说TCP是一个面向连接的通信协议,因此在进行数据传输前一般需要先建立连接(TFO除外),因此我们首先来介绍TCP的连接管理. 通常一次完整的TCP数据传输一般包 ...
- C#创建Window服务图解,安装、配置、以及C#操作Windows服务
一.首先打开VS2013,创建Windows服务项目 二.创建完成后对"Service1.cs"重命名位"ServiceDemo":然后切换到代码视图,写个服务 ...
- alpha阶段个人总结(201521123034陈凯欣)
一.个人总结 第 0 部分:基本数据结构和算法问题 大二的时候上过数据结构课,感觉自己没有学的太深入,就如之前结对编程时候四则运算有用到的二叉树来解决问题,对于二叉树就有个模糊的概念,实际动手操作起来 ...
- 软工实践原型设计——PaperRepositories
软工实践原型设计--PaperRepositories 写在前面 本次作业链接 队友(031602237吴杰婷)博客链接 pdf文件地址 原型设计地址(加载有点慢...) 结对成员:031602237 ...
- Linux服务器记录并查询历史操作记录
Linux服务器在使用过程中,经常会有除自己之外的其他人员使用.并不是每个人都对Linux服务器特别熟悉,难免会有一些操作导致服务器报错. 因此,监控Linux服务器的操作并记录下来,是非常有必要的! ...
- phpcmsv9 同时调用多个栏目的文章标签
V9版本默认好像没有多栏目调用的标签,例如我用{pc:content action="lists" catid ="6,7,8,9,10" num=" ...
- Gradle sync failed: Failed to find Build Tools revision 26.0.2的解决办法
说明在android studio中没有 build tools 的26.0.2的版本,你确认一下,是否是这样: 点击==>android studio的菜单栏中Tools==>andro ...
- 【数据库】Sql Server备份还原脚本
USE master RESTORE DATABASE 新建的没有任何数据的数据库名 FROM DISK = 'e:\数据库备份文件.bak' WITH MOVE '原来的逻辑名称' TO 'e:\新 ...
- C++面向对象编程,继承,数据抽象,动态绑定
派生类(derived class)能够继承基类(base class )定义的成员: 1).派生类可以无需改变而使用那些与派生类具体特性不相关的操作 2).可以重新定义那些与派生类相关的成员函数,将 ...
- BZOJ 1296 粉刷匠(分组背包套DP)
刚开始往网络流的方向想.建不出图... 因为每次只能对一行进行染色.每一行都是独立的. 对于每一行,因为格子只能染一次,所以可以发现这是一个多阶段决策问题,这个决策就是当前格子染0还是染1. 令dp[ ...