HDU 1069 Monkey and Banana (dp)
Problem Description
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.
The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.
They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.
Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.
Input
The input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.
Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
分析:
题目倒是不难!对于动态规划的题,我觉得最重要的就是找出所谓的递归方程吧!
这点最为重要!找到了递归方程,代码实现只是时间问题罢了!
这道题目有一些要点要抓住!
1,下一层的面积要严格大于上一层!我在这里错了几次!所谓严格大于,那就是下一层的长宽都大于下一层的长宽或宽长,等于都不行!
2,这道问题比较像01背包问题!我用的方法是拆分!即将一种block拆成3种!(一种block有三种摆放姿势,且一种block最多放这三种姿势)这样,先按照面积排序!然后再次动归!可以减少时间复杂度!
3,hdp[i]表示如果以第i块block为顶,最多可以达到的高度!
代码:
#include<iostream>
#include<stdio.h>
#include <algorithm>
using namespace std;
typedef struct Block
{
int x,y,high,dp;
};
bool cmp(Block a,Block b)
{
if(a.x<b.x)
return 1;
else if(a.x==b.x&&a.y<a.y)
return 1;
return 0;
}
int max(int a,int b)
{
return a>b?a:b;
}
Block b[1000];
int main()
{
int x,y,z,n,i,j,k,Max,p=0;
while(~scanf("%d",&n)&&n)
{
p++;
k=0;
while(n--)
{
scanf("%d%d%d",&x,&y,&z);
if(x==y)
{
if(y==z)
{
b[k].x=x;
b[k].y=x;
b[k].high=x;
b[k++].dp=x;
}
else
{
b[k].x=b[k].y=x;
b[k].high=z;
b[k++].dp=z;
b[k].x=x;
b[k].y=z;
b[k].high=x;
b[k++].dp=x;
b[k].x=z;
b[k].y=x;
b[k].high=x;
b[k++].dp=x;
}
}
else
{
if(x==z)
{
b[k].x=b[k].y=x;
b[k].high=y;
b[k++].dp=y;
b[k].x=x;
b[k].y=y;
b[k].high=x;
b[k++].dp=x;
b[k].x=y;
b[k].y=x;
b[k].high=x;
b[k++].dp=x;
}
else if(y==z)
{
b[k].x=b[k].y=y;
b[k].high=x;
b[k++].dp=x;
b[k].x=x;
b[k].y=y;
b[k].high=y;
b[k++].dp=y;
b[k].x=y;
b[k].y=x;
b[k].high=y;
b[k++].dp=y;
}
else
{
b[k].x=x;
b[k].y=y;
b[k].high=z;
b[k++].dp=z;
b[k].x=x;
b[k].y=z;
b[k].high=y;
b[k++].dp=y;
b[k].x=y;
b[k].y=x;
b[k].high=z;
b[k++].dp=z;
b[k].x=y;
b[k].y=z;
b[k].high=x;
b[k++].dp=x;
b[k].x=z;
b[k].y=x;
b[k].high=y;
b[k++].dp=y;
b[k].x=z;
b[k].y=y;
b[k].high=x;
b[k++].dp=x;
}
}
sort(b,b+k,cmp);
Max=0;
for(i=0; i<k; i++)
{
for(j=0; j<i; j++)
if(b[i].x>b[j].x&&b[i].y>b[j].y)
b[i].dp=max((b[j].dp+b[i].high),b[i].dp);
Max=max(b[i].dp,Max);
}
}
printf("Case %d: maximum height = %d\n",p,Max);
}
return 0;
}
HDU 1069 Monkey and Banana (dp)的更多相关文章
- HDU 1069 Monkey and Banana ——(DP)
简单DP. 题意:给出若干种长方体,如果摆放时一个长方体的长和宽小于另一个的长宽,那么它可以放在另一个的上面,问最高能放多少高度.每种长方体的个数都是无限的. 做法:因为每种个数都是无限,那么每种按照 ...
- HDU 1069 Monkey and Banana(动态规划)
Monkey and Banana Problem Description A group of researchers are designing an experiment to test the ...
- HDU 1069 Monkey and Banana(DP——最大递减子序列)
题目链接: http://acm.split.hdu.edu.cn/showproblem.php?pid=1069 题意描述: 给n块砖,给出其长,宽和高 问将这n块砖,怎样叠放使得满足以下条件使得 ...
- HDU 1069 Monkey and Banana (动态规划)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 简单记录一下 思路:把长方体的各种摆法都存到数组里面,然后按照长宽排序,再dp即可 转移方程 d ...
- HDU 1069 Monkey and Banana(转换成LIS,做法很值得学习)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS (Java ...
- HDU 1069:Monkey and Banana(DP)
Monkey and Banana Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1069 Monkey and Banana(二维偏序LIS的应用)
---恢复内容开始--- Monkey and Banana Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...
- HDU 1069 Monkey and Banana (动态规划、上升子序列最大和)
Monkey and Banana Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1069 Monkey and Banana 基础DP
题目链接:Monkey and Banana 大意:给出n种箱子的长宽高.每种不限个数.可以堆叠.询问可以达到的最高高度是多少. 要求两个箱子堆叠的时候叠加的面.上面的面的两维长度都严格小于下面的. ...
随机推荐
- TCP系列10—连接管理—9、syncookie、fastopen与backlog
这部分内容涉及较多linux实现,可以跳过. 一.listen系统调用对backlog的处理 当socket处于LISTEN或者CLOSED状态时,fastopen队列的长度可以通过TCP_FASTO ...
- JSP在页面加载时调用servlet的方法
方法:先在JS里面写一个调用servlet的事件(可以利用ajax),然后利用<body>标签的onload调用这个事件. 代码如下: jsp文件代码如下: <%@ page lan ...
- fuck the browser mode
使用了source insight 4有一段时间了,今天用着突然发现我的鼠标移动到变量.函数.自定义的类型上时,单击鼠标左键直接就跳到了定义处,很像是按住了Ctrl再单击鼠标,用得极其不舒服,开始怀疑 ...
- 如何在flink中传递参数
众所周知,flink作为流计算引擎,处理源源不断的数据是其本意,但是在处理数据的过程中,往往可能需要一些参数的传递,那么有哪些方法进行参数的传递?在什么时候使用?这里尝试进行简单的总结. 使用conf ...
- HSF原理
HSF(High-speed Service Framework),高速服务框架,是阿里系主要采用的服务框架,其目的是作为桥梁联通不同的业务系统,解耦系统之间的实现依赖.其高速体现在底层的非阻塞I/O ...
- BZOJ 2326 数学作业(分段矩阵快速幂)
实际上,对于位数相同的连续段,可以用矩阵快速幂求出最后的ans,那么题目中一共只有18个连续段. 分段矩阵快速幂即可. #include<cstdio> #include<iostr ...
- Python re(正则表达式)模块
python正则表达式 正则表达式是一个特殊的字符序列,它能帮助我们方便的检查一个字符串是否与某种模式匹配.Python自1.5版本起增加了re模块,它提供Perl风格的正则表达式模式.re模块使Py ...
- BZOJ3167/BZOJ4824 HEOI2013SAO/CQOI2017老C的键盘(树形dp)
前者是后者各方面的强化版. 容易想到设f[i][j]表示i子树中第j小的是i的方案数(即只考虑相对关系).比较麻烦的在于转移.考虑逐个合并子树.容易想到枚举根原来的排名和子树根原来的排名,算一发组合数 ...
- 2015 EC L - Multiplication Table
/************************************************************************* > File Name: L.cpp > ...
- 【刷题】BZOJ 1717 [Usaco2006 Dec]Milk Patterns 产奶的模式
Description 农夫John发现他的奶牛产奶的质量一直在变动.经过细致的调查,他发现:虽然他不能预见明天产奶的质量,但连续的若干天的质量有很多重叠.我们称之为一个"模式". ...