这道题的最后一个样例TLE(超时)了,判断素数的条件是 i*i<n

 1 #include<stdio.h>
2 #include<stdlib.h>
3 #include<string.h>
4 #include<math.h>
5 int isPrime(int num)
6 {
7 for (int i = 2; i <= sqrt(num*1.0); i++)
8 if (num % i == 0)
9 return 0;
10 return 1;
11 }
12 int isRoundNum(int num)
13 {
14 char Str[20] = { 0 };
15 sprintf(Str,"%d",num);//格式化的向字符数组中传入数字,相当于把数组转换为字符串
16 int i = strlen(Str) - 1;//尾指针
17 int j = 0;//头指针
18 while (j < i && Str[j] == Str[i])//尾指针所在位置等于头指针所在位置,则尾指针向前移动(即--),头指针向后移动(即++),直到有对称位置上不相等的字符或者头尾指针相遇时退出循环
19 {
20 j++; i--;
21 }
22 if (j >= i)return 1;//如果是因为头尾指针相遇而退出,则是回文数
23 else return 0;//如果是因为不相等退出,则不是回文数
24 }
25 int main()
26 {
27 int a, b;
28 scanf("%d %d", &a, &b);
29 for (int i = a; i <= b; i++)
30 {
31 if (i%2!=0)
32 {
33 if (isRoundNum(i))
34 {
35 if (isPrime(i))
36 {
37 printf("%d\n", i);
38 }
39 }
40 }
41 return 0;
42 }

于是上网学了一下素数的打表方法,打表方法多种,这里采用埃氏筛的方法

 1     bool* Prime = (int*)malloc(sizeof(bool) *(Num+1));//Num是要寻找的范围的右边界,由于数组从0开始计数,故加1才能获取下标为Num的素数
//宏定义,bool为int,true为1,false为0,当i为素数时,标记Prime[i]为true,否则为false
2 memset(Prime, true, sizeof(Prime));//先全认为是素数,填充上true
3 Prime[0] = Prime[1] = false;//0,1不为素数,初始化为false
4 for (int i = a; i * i < b; i++)
5 {
6 if (Prime[i])//如果这个数是素数(这里应该先找出第一个为素数的值)
7 {
8 for (int k = i * i; k <= b; k+=i)
9 Prime[k] = false;
10 }
11 }

但是但是,我草泥马,还是过不去最后一个测试点,仍旧是TLE-_-#

而且通过洛谷IDE发现memset用法有错,对于malloc来的数组P,不能直接sizeof(P),而是应该为memset(P,true,(数组的大小)*数组类型)。如果直接sizeof(P),只会传入4个字节

你哇哇哇哇哇哇哇

通过查资料修修改改,加了一个条件 if(b>9989899)b=9989899,即直接不判断当大于9989899的数,如下

 1 #include<stdio.h>
2 #include<stdlib.h>
3 #include<string.h>
4 #include<math.h>
5 #define bool char
6 #define true -1
7 #define false 0
8 int isRoundNum(int num)
9 {
10 char Str[20] = { 0 };
11 sprintf(Str, "%d", num);
12 int i = strlen(Str) - 1;
13 int j = 0;
14 while (j < i && Str[j] == Str[i])
15 {
16 j++; i--;
17 }
18 if (j >= i)return 1;
19 else return 0;
20 }
21 int main()
22 {
23 int a, b;
24 scanf("%d %d", &a, &b);
25 if (b > 9989899) b = 9989899;
26 bool* Prime = (bool*)malloc(sizeof(bool) * (b + 1));
27 memset(Prime, true, (b + 1)*sizeof(bool));
28 Prime[0] = Prime[1] = false;
29 for (int i = 2; i * i <= b; i++)
30 {
31 if (Prime[i])
32 {
33 for (int k = i * i; k <= b; k += i)
34 Prime[k] = false;
35 }
36 }
37 for (int i = a; i <= b; i++)
38 {
39 if (Prime[i])
40 {
41 if (isRoundNum(i))
42 printf("%d\n", i);
43 }
44 }
45 return 0;
46 }

提交确实AC了,但是总感觉emmmm,有点钻空子的味道


查资料,发现一个定理,所有偶数位的数都不可能成为回文质数(11除外),若其为回文数,则比会被11整除

所以十位数,千位数,十万位数,千万位数都不可能存在回文质数,所以可以直接忽略这些数量级的数,属实是减少了一大截时间,而且由于本题测试数据最大1亿,所以大于一千万的数据直接不用判断了,一千万以上必定没有回文素数,也就是if(b>10000000)b=10000000;,这样就可以Ac了,当然也可以判断是否为十位数千位数十万位等,只需要判断strlen(Str)的长度即可

而且通过题解,发现了一个更简单快捷的方法——————————————————那就是

打表!

用本地IDE找出所有回文质数(没错就是所有)然后存在一个数组中,检索是只需要输出大于a小于b的数组元素即可,标准的线性复杂度(

#include<cstdio>
#include<cstring>
using namespace std;
int a,b,db[800]={0,2,3,5,7,11,101,131,151,181,
191,313,353,373,383,727,757,787,797,
919,929,10301,10501,10601,11311,11411,12421,12721,
12821,13331,13831,13931,14341,14741,15451,15551,16061,
16361,16561,16661,17471,17971,18181,18481,19391,19891,
19991,30103,30203,30403,30703,30803,31013,31513,32323,
32423,33533,34543,34843,35053,35153,35353,35753,36263,
36563,37273,37573,38083,38183,38783,39293,70207,70507,
70607,71317,71917,72227,72727,73037,73237,73637,74047,
74747,75557,76367,76667,77377,77477,77977,78487,78787,
78887,79397,79697,79997,90709,91019,93139,93239,93739,
94049,94349,94649,94849,94949,95959,96269,96469,96769,
97379,97579,97879,98389,98689,1003001,1008001,1022201,1028201,
1035301,1043401,1055501,1062601,1065601,1074701,1082801,1085801,1092901,
1093901,1114111,1117111,1120211,1123211,1126211,1129211,1134311,1145411,
1150511,1153511,1160611,1163611,1175711,1177711,1178711,1180811,1183811,
1186811,1190911,1193911,1196911,1201021,1208021,1212121,1215121,1218121,
1221221,1235321,1242421,1243421,1245421,1250521,1253521,1257521,1262621,
1268621,1273721,1276721,1278721,1280821,1281821,1286821,1287821,1300031,
1303031,1311131,1317131,1327231,1328231,1333331,1335331,1338331,1343431,
1360631,1362631,1363631,1371731,1374731,1390931,1407041,1409041,1411141,
1412141,1422241,1437341,1444441,1447441,1452541,1456541,1461641,1463641,
1464641,1469641,1486841,1489841,1490941,1496941,1508051,1513151,1520251,
1532351,1535351,1542451,1548451,1550551,1551551,1556551,1557551,1565651,
1572751,1579751,1580851,1583851,1589851,1594951,1597951,1598951,1600061,
1609061,1611161,1616161,1628261,1630361,1633361,1640461,1643461,1646461,
1654561,1657561,1658561,1660661,1670761,1684861,1685861,1688861,1695961,
1703071,1707071,1712171,1714171,1730371,1734371,1737371,1748471,1755571,
1761671,1764671,1777771,1793971,1802081,1805081,1820281,1823281,1824281,
1826281,1829281,1831381,1832381,1842481,1851581,1853581,1856581,1865681,
1876781,1878781,1879781,1880881,1881881,1883881,1884881,1895981,1903091,
1908091,1909091,1917191,1924291,1930391,1936391,1941491,1951591,1952591,
1957591,1958591,1963691,1968691,1969691,1970791,1976791,1981891,1982891,
1984891,1987891,1988891,1993991,1995991,1998991,3001003,3002003,3007003,
3016103,3026203,3064603,3065603,3072703,3073703,3075703,3083803,3089803,
3091903,3095903,3103013,3106013,3127213,3135313,3140413,3155513,3158513,
3160613,3166613,3181813,3187813,3193913,3196913,3198913,3211123,3212123,
3218123,3222223,3223223,3228223,3233323,3236323,3241423,3245423,3252523,
3256523,3258523,3260623,3267623,3272723,3283823,3285823,3286823,3288823,
3291923,3293923,3304033,3305033,3307033,3310133,3315133,3319133,3321233,
3329233,3331333,3337333,3343433,3353533,3362633,3364633,3365633,3368633,
3380833,3391933,3392933,3400043,3411143,3417143,3424243,3425243,3427243,
3439343,3441443,3443443,3444443,3447443,3449443,3452543,3460643,3466643,
3470743,3479743,3485843,3487843,3503053,3515153,3517153,3528253,3541453,
3553553,3558553,3563653,3569653,3586853,3589853,3590953,3591953,3594953,
3601063,3607063,3618163,3621263,3627263,3635363,3643463,3646463,3670763,
3673763,3680863,3689863,3698963,3708073,3709073,3716173,3717173,3721273,
3722273,3728273,3732373,3743473,3746473,3762673,3763673,3765673,3768673,
3769673,3773773,3774773,3781873,3784873,3792973,3793973,3799973,3804083,
3806083,3812183,3814183,3826283,3829283,3836383,3842483,3853583,3858583,
3863683,3864683,3867683,3869683,3871783,3878783,3893983,3899983,3913193,
3916193,3918193,3924293,3927293,3931393,3938393,3942493,3946493,3948493,
3964693,3970793,3983893,3991993,3994993,3997993,3998993,7014107,7035307,
7036307,7041407,7046407,7057507,7065607,7069607,7073707,7079707,7082807,
7084807,7087807,7093907,7096907,7100017,7114117,7115117,7118117,7129217,
7134317,7136317,7141417,7145417,7155517,7156517,7158517,7159517,7177717,
7190917,7194917,7215127,7226227,7246427,7249427,7250527,7256527,7257527,
7261627,7267627,7276727,7278727,7291927,7300037,7302037,7310137,7314137,
7324237,7327237,7347437,7352537,7354537,7362637,7365637,7381837,7388837,
7392937,7401047,7403047,7409047,7415147,7434347,7436347,7439347,7452547,
7461647,7466647,7472747,7475747,7485847,7486847,7489847,7493947,7507057,
7508057,7518157,7519157,7521257,7527257,7540457,7562657,7564657,7576757,
7586857,7592957,7594957,7600067,7611167,7619167,7622267,7630367,7632367,
7644467,7654567,7662667,7665667,7666667,7668667,7669667,7674767,7681867,
7690967,7693967,7696967,7715177,7718177,7722277,7729277,7733377,7742477,
7747477,7750577,7758577,7764677,7772777,7774777,7778777,7782877,7783877,
7791977,7794977,7807087,7819187,7820287,7821287,7831387,7832387,7838387,
7843487,7850587,7856587,7865687,7867687,7868687,7873787,7884887,7891987,
7897987,7913197,7916197,7930397,7933397,7935397,7938397,7941497,7943497,
7949497,7957597,7958597,7960697,7977797,7984897,7985897,7987897,7996997,
9002009,9015109,9024209,9037309,9042409,9043409,9045409,9046409,9049409,
9067609,9073709,9076709,9078709,9091909,9095909,9103019,9109019,9110119,
9127219,9128219,9136319,9149419,9169619,9173719,9174719,9179719,9185819,
9196919,9199919,9200029,9209029,9212129,9217129,9222229,9223229,9230329,
9231329,9255529,9269629,9271729,9277729,9280829,9286829,9289829,9318139,
9320239,9324239,9329239,9332339,9338339,9351539,9357539,9375739,9384839,
9397939,9400049,9414149,9419149,9433349,9439349,9440449,9446449,9451549,
9470749,9477749,9492949,9493949,9495949,9504059,9514159,9526259,9529259,
9547459,9556559,9558559,9561659,9577759,9583859,9585859,9586859,9601069,
9602069,9604069,9610169,9620269,9624269,9626269,9632369,9634369,9645469,
9650569,9657569,9670769,9686869,9700079,9709079,9711179,9714179,9724279,
9727279,9732379,9733379,9743479,9749479,9752579,9754579,9758579,9762679,
9770779,9776779,9779779,9781879,9782879,9787879,9788879,9795979,9801089,
9807089,9809089,9817189,9818189,9820289,9822289,9836389,9837389,9845489,
9852589,9871789,9888889,9889889,9896989,9902099,9907099,9908099,9916199,
9918199,9919199,9921299,9923299,9926299,9927299,9931399,9932399,9935399,
9938399,9957599,9965699,9978799,9980899,9981899,9989899,
781};//哈哈^-^#
int main()
{
scanf("%d %d",&a,&b);
for(int i=1;i<=781;i++)
if(db[i]>=a && db[i]<=b) printf("%d\n",db[i]);
return 0;
}

无敌!

素数打表,洛谷P1217 [USACO1.5]回文质数 Prime Palindromes的更多相关文章

  1. 洛谷 P1217 [USACO1.5]回文质数 Prime Palindromes

    P1217 [USACO1.5]回文质数 Prime Palindromes 题目描述 因为151既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 是回文质数. 写一个程序来找 ...

  2. 洛谷 P1217 [USACO1.5]回文质数 Prime Palindromes【取回文数/数论/字符串】

    题目描述 因为151既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 是回文质数. 写一个程序来找出范围[a,b](5 <= a < b <= 100,000 ...

  3. Java实现 洛谷 P1217 [USACO1.5]回文质数 Prime Palindromes

    import java.util.Scanner; public class Main { private static Scanner cin; public static void main(St ...

  4. 洛谷 P1217 [USACO1.5]回文质数 Prime Palindrome

    嗯... 这道题对于蒟蒻的我来说实在是TQL... 先看一下题:(题目链接:https://www.luogu.org/problemnew/show/P1217) 然后说一下我的做题过程吧: 一看到 ...

  5. P1217 [USACO1.5]回文质数 Prime Palindromes(求100000000内的回文素数)

    P1217 [USACO1.5]回文质数 Prime Palindromes 题目描述 因为151既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 是回文质数. 写一个程序来找 ...

  6. luogu P1217 [USACO1.5]回文质数 Prime Palindromes x

    P1217 [USACO1.5]回文质数 Prime Palindromes 题目描述 因为151既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 是回文质数. 写一个程序来找 ...

  7. P1217 [USACO1.5]回文质数 Prime Palindromes

    题目描述 因为151既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 是回文质数. 写一个程序来找出范围[a,b](5 <= a < b <= 100,000 ...

  8. P1217 [USACO1.5]回文质数 Prime Palindromes(stringstream,sizeof(num)/sizeof(num[0]),打表)

    题目描述 因为 151 既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 是回文质数. 写一个程序来找出范围 [a,b](5≤a<b≤100,000,000)( 一亿)间 ...

  9. P1217 [USACO1.5]回文质数 Prime Palindromes(技巧+暴力枚举+线性筛)

    技巧:就是偶数位的回文数字一定不是质数---------证明:奇数位之和sum1==偶数位之和sum2的数字可以被11整除.(11除外,这是一个坑点) 最高位,最低位必须是 1, 3, 7, 9 暴力 ...

  10. (函数)P1217 [USACO1.5]回文质数 Prime Palindromes

    题解: 第一次: 算法复杂度过高,导致编译超时,需要优化 #include<stdio.h>#include<math.h>int a[100000001] = { 0 };i ...

随机推荐

  1. Zookeeper(3)---java客户端的使用

    前面介绍了zk指令的使用,这里说一下java客户端中怎么使用这些指令 <dependency> <groupId>org.apache.zookeeper</groupI ...

  2. Power Designer建模之餐饮在线点评系统——概念数据模型

    企业信息管理 局部概念模型 企业 餐饮企业 食材提供商 食材 特色菜 团购活动 优惠券 促销活动 会员团购订单 优惠券下载和浏览记录表 会员信息管理 局部概念模型 会员 会员扩展信息 会员积分记录 餐 ...

  3. 扒一扒ProcessOn 新功能——一键编号、图形组合、左侧导航、画布水印、表格组件

    思维导图.一键编号 思维导图新增 多种全新主题风格,让您的创作赏心悦目 思维导图新增 一键编号 功能 流程图.图形组合 自定义组合图形功能:新增流程图 我的图形 功能,用户可以设置或者上传自己的图形 ...

  4. java基础(12)--static变量/方法 与 无 static的变量/方法的区别

    一.static方法与非static方法的区别: 1.带有static方法调用:使用类名.方法名(),(建议,但也支持,"引用".变量的方式访问) 2.没有static方法调用(实 ...

  5. ACP 知识点总结

    记录下学习ACP过程不断遇到的且需要记录的知识点: 在阿里云专有网络VPC创建之后,路由器也是随着VPC一起自动创建,所以不需要手动创建,这个时候需要继续创建交换机才能在交换机种创建其他云产品. 7层 ...

  6. Linux 中常见目录的作用

    by emanjusaka from https://www.emanjusaka.top/2024/01/linux-directory-role 彼岸花开可奈何 本文欢迎分享与聚合,全文转载请留下 ...

  7. java - 对象装载数据传递到方法中

    1. 创建 Phone 类 package class_object; public class Phone { String brand; String color; double price; v ...

  8. WebStrom中解决中文乱码——2021050

    1.首先将IDE Encoding,Project Encoding和下面的Default Encoding for properties file设置为utf-8 2.在HTML中添加 <me ...

  9. Linux-分区-fdisk-mkfs-mount

  10. Go-快速排序

    package main import "fmt" // 快速排序 // 特征: // 1. 选定一个数,让这个数左边的比这个数小,右边比这个数大 // 2. 然后这个基数就是已经 ...