字符串匹配算法:KMP
Knuth–Morris–Pratt(KMP)是由三位数学家克努斯、莫里斯、普拉特同时发现,所有人们用三个人的名字来称呼这种算法,KMP是一种改进的字符串匹配算法,它的核心是利用匹配失败后的信息,尽量减少模式串与主串的匹配次数以达到快速匹配的目的。它的时间复杂度是 O(m+n)
字符匹配:给你两个字符串 haystack 和 needle ,请你在 haystack 字符串中找出 needle 字符串的第一个匹配项的下标(下标从 0 开始)。如果 needle 不是 haystack 的一部分,则返回 -1
在介绍KMP算法之前,我们先看一下另一种暴力算法(BF算法)去解字符匹配应该怎么做

BF算法:时间复杂度O(m*n)
class Solution:
def strStr(self, haystack: str, needle: str) -> int:
#hi是haystack的当前索引
hi = 0
haystackLength = len(haystack)
needleLength = len(needle)
for i in range(haystackLength - needleLength+1):
#每次匹配等于和完整的needle的字符串逐一匹配
if haystack[i:i+needleLength] == needle:
return i
return -1
KMP算法:时间复杂度O(m+n)
KMP构造了一个next列表来对应改位置索引如果匹配失败应该追溯回到什么位置,这样我们讲减少了匹配次数

那么我们如何去构造维护我们的next(最长相同前后缀)
构造方法为:next[i] 对应的下标,为 P[0...i - 1] 的最长公共前缀后缀的长度,令 next[0] = -1。 具体解释如下:
例如对于字符串 abcba:
前缀:它的前缀包括:a, ab, abc, abcb,不包括本身;
后缀:它的后缀包括:bcba, cba, ba, a,不包括本身;
最长公共前缀后缀:abcba 的前缀和后缀中只有 a 是公共部分,字符串 a 的长度为 1
我们通过动态规划来维护next,假设你知道next[0:i-1]位置上所有的回溯值,那么next[i-1]和next[i]相比仅仅多了一个位置,如果这个多的字符可以匹配上,那么next[i]一定等于next[i-1]+1(如下图所示)

那么如果匹配不上呢,匹配不上我们回溯到next[i-1]所需要回溯的位置,直到可以匹配上或到达无法追溯的位置next[0] = -1
@staticmethod
def same_start_end_str(p):
"""
通过needle串来知道每个索引位置对应的最长前后缀
例如ababa的最长前后缀是aba,前后缀是不和needle等长的最长相同前后缀
"""
next = [-1] * (len(p)+1)
si = -1
ei = 0
pl = len(p)
while ei < pl :
if si == -1 or p[si] == p[ei]:
si += 1
ei += 1
next[ei] = si
else:
#无法匹配上,继续向前追溯
si = next[si] return next
那我们有了next就可以取实现我们KMP算法了,完整代码如下
class Solution:
def strStr(self, haystack: str, needle: str) -> int:
next = self.same_start_end_str(needle)
#hi是haystack当前索引,ni是needle当前索引
hi = ni = 0
hl = len(haystack)
nl = len(needle)
while hi < hl and ni < nl:
if ni == -1 or haystack[hi] == needle[ni]:
hi += 1
ni += 1
else:
ni = next[ni] if ni == nl:
return hi - ni
else:
return -1 @staticmethod
def same_start_end_str(p):
"""
通过needle串来知道每个索引位置对应的最长前后缀
例如ababa的最长前后缀是aba,前后缀是不和needle等长的最长相同前后缀
"""
next = [-1] * (len(p)+1)
si = -1
ei = 0
pl = len(p)
while ei < pl :
if si == -1 or p[si] == p[ei]:
si += 1
ei += 1
next[ei] = si
else:
#无法匹配上,继续向前追溯
si = next[si] return next
字符串匹配算法:KMP的更多相关文章
- 字符串匹配算法 - KMP
前几日在微博上看到一则微博是说面试的时候让面试者写一个很简单的字符串匹配都写不出来,于是我就自己去试了一把.结果写出来的是一个最简单粗暴的算法.这里重新学习了一下几个经典的字符串匹配算法,写篇文章以巩 ...
- 字符串匹配算法——KMP算法学习
KMP算法是用来解决字符串的匹配问题的,即在字符串S中寻找字符串P.形式定义:假设存在长度为n的字符数组S[0...n-1],长度为m的字符数组P[0...m-1],是否存在i,使得SiSi+1... ...
- 4种字符串匹配算法:KMP(下)
回顾:4种字符串匹配算法:BS朴素 Rabin-karp(上) 4种字符串匹配算法:有限自动机(中) 1.图解 KMP算法是一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R ...
- 字符串匹配算法KMP算法
数据结构中讲到关于字符串匹配算法时,提到朴素匹配算法,和KMP匹配算法. 朴素匹配算法就是简单的一个一个匹配字符,如果遇到不匹配字符那么就在源字符串中迭代下一个位置一个一个的匹配,这样计算起来会有很多 ...
- 字符串匹配算法--KMP字符串搜索(Knuth–Morris–Pratt string-searching)C语言实现与讲解
一.前言 在计算机科学中,Knuth-Morris-Pratt字符串查找算法(简称为KMP算法)可在一个主文本字符串S内查找一个词W的出现位置.此算法通过运用对这个词在不匹配时本身就包含足够的信息 ...
- 字符串匹配算法——KMP算法
处理字符串的过程中,难免会遇到字符匹配的问题.常用的字符匹配方法 1. 朴素模式匹配算法(Brute-Force算法) 求子串位置的定位函数Index( S, T, pos). 模式匹配:子串的定位操 ...
- [Algorithm] 字符串匹配算法——KMP算法
1 字符串匹配 字符串匹配是计算机的基本任务之一. 字符串匹配是什么?举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串& ...
- 字符串匹配算法——KMP、BM、Sunday
KMP算法 KMP算法主要包括两个过程,一个是针对子串生成相应的“索引表”,用来保存部分匹配值,第二个步骤是子串匹配. 部分匹配值是指字符串的“前缀”和“后缀”的最长的共有元素的长度.以“ABCDAB ...
- KMP Algorithm 字符串匹配算法KMP小结
这篇小结主要是参考这篇帖子从头到尾彻底理解KMP,不得不佩服原作者,写的真是太详尽了,让博主产生了一种读学术论文的错觉.后来发现原作者是写书的,不由得更加敬佩了.博主不才,尝试着简化一些原帖子的内容, ...
- 字符串匹配算法-kmp算法
一原理: 部分转自:http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm.html 字 ...
随机推荐
- ROS的通信机制
通信机制 节点--执行单元 执行具体任务的进程.独立运行的可执行文件: 不同节点可以使用不同的编程语言,可分布式运行在不同的主机上. 节点在系统中的名称是必须是唯一的. 节点管理器(ROS Maste ...
- MyBatis(lombok)
在ida中安装lombok 在maven中导入依赖 <dependencies> <dependency> <groupId>org.projectlombok&l ...
- Mybatis(配置解析解读(核心))
核心配置文件 mybaits-confing.xml *properties(属性) *settring(设置) *typeAliases(类型别名) *typeHandlers(类型处理器) *ob ...
- Cilium系列-4-Cilium本地路由
系列文章 Cilium 系列文章 前言 在前文中我们提到, cilium install 默认安装后, Cilium 功能启用和禁用情况如下: datapath mode: tunnel: 因为兼容性 ...
- 【持续更新】C/C++ 踩坑记录(一)
未定义行为之 NULL dereference 下面这段代码中 is_valid() 解引用了空指针 str,我们的直觉是编译运行后将迎来 SIGSEGV,然而事情并非所期望的那样. /* * ub_ ...
- VMware 备份操作系统
在VMware 中备份方式有两种:快照和克隆. 快照:又称还原点,就是保存在拍快照时系统的状态,包含所有内容.在之后的使用中,随时都可以恢复.[短期备份,需要频繁备份时,使用该方法.操作的虚拟系统一般 ...
- 暑假刷题记 B
动态规划 字符串 杂题 A:Animals and Puzzle B:Vanya and Treasure 根号分治. 实际上是从 \((1, 1)\) 先找一个 \(1\),再找一个 \(2\dot ...
- 一款开源免费、更符合现代用户需求的论坛系统:vanilla
对于个人建站来说,WordPress相信很多读者都知道了.但WordPress很多时候我们还是用来建立自主发布内容的站点为主,适用于个人博客.企业主站等.虽然有的主题可以把WordPress变为论坛, ...
- 8、Mybatis之自定义映射
8.1.环境搭建 8.1.1.创建新module 创建名为mybatis_resultMap的新module,过程参考5.1节 8.1.2.创建t_emp和t_dept表 CREATE TABLE ` ...
- 小白整理了VUEX
在小白开发的项目中前端使用的是Vue,虽然在日常工作中可以使用Vue进行开发工作.但是没有系统的学习过Vue,对Vue的一些特性和方法使用时常常需要查询资料解决问题,查询资料常常会占用大量时间,尤其对 ...