Last Digits
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 2233   Accepted: 474

Description

Exponentiation of one integer by another often produces very large results. In this problem, we will compute a function based on repeated exponentiation, but output only the last n digits of the result. Doing this efficiently requires careful thought about how to avoid computing the full answer.

Given integers b, n, and i, we define the function f(x) recursively by f(x) = bf(x-1) if x > 0, and f(0)=1. Your job is to efficiently compute the last n decimal digits of f(i). 

Input

The input consists of a number of test cases. Each test case starts with the integer b (1 <= b <= 100) called the base. On the next line is the integer i (1 <= i <= 100) called the iteration count. And finally, the last line contains the number n (1 <= n <= 7), which is the number of decimal digits to output. The input is terminated when b = 0.

Output

For each test case, print on one line the last n digits of f(i) for the base b specified. If the result has fewer than n digits, pad the result with zeroes on the left so that there are exactly n digits.

Sample Input

2
4
7
10
10
6
3
10
7
0

Sample Output

0065536
000000
4195387

Source

/*
* @Author: Lyucheng
* @Date: 2017-08-07 15:47:29
* @Last Modified by: Lyucheng
* @Last Modified time: 2017-08-07 20:10:43
*/
/*
题意:定义一个函数f(i)=b^(f(i-1)),给你b,i,n让你求f(i)的后n位,不足的用前导零补充 思路:后n位就是f(n)%(10^n) 问题:超时...打表
LL b,n,i;
LL mod;
char str[10];
LL pos;
char format[] = "%00d\n"; inline LL power(LL a,LL b,LL mod){//a的b次方
if(b==0) return 1;
LL cnt=power(a,b/2,mod);
cnt=cnt*cnt%mod;
if(b%2==1) cnt=cnt*a%mod;
return cnt;
} // return f(x)%mod
inline LL fun(LL b,LL x,LL mod){
if(x==0) return 1LL;//如果是0次,那么就是1
else{
LL res=power(b,fun(b,x-1,mod),mod);
if(res==0) res=mod;
return res;
}
}
*/
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h> using namespace std; int a[][]={
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,},
{,,,,,,,,,,,,}, };
int b,i,n; int main(){
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
while(scanf("%d",&b)!=EOF&&b){
scanf("%d%d",&i,&n);
string s="";
int pos=a[b-][(i>?:i)];
for(int i=;i<n;i++){
s+=pos%+'';
pos/=;
}
while(n--){
cout<<s[n];
}cout<<endl;
}
return ;
}

poj 2720 Last Digits的更多相关文章

  1. poj 3373 Changing Digits (DFS + 记忆化剪枝+鸽巢原理思想)

    http://poj.org/problem?id=3373 Changing Digits Time Limit: 3000MS   Memory Limit: 65536K Total Submi ...

  2. POJ 3373 Changing Digits(DP)

    题目链接 记录路径的DP,看的别人的思路.自己写的也不好,时间居然2000+,中间的取余可以打个表,优化一下. 写的各种错,导致wa很多次,写了一下午,自己构造数据,终于发现了最后一个bug. dp[ ...

  3. POJ 3373 Changing Digits 好蛋疼的DP

    一開始写的高位往低位递推,发现这样有些时候保证不了第四条要求.于是又開始写高位往低位的记忆化搜索,又发现传參什么的蛋疼的要死.然后又发现高位開始的记忆化搜索就是从低位往高位的递推呀,遂过之. dp[i ...

  4. POJ 3373 Changing Digits 记忆化搜索

    这道题我是看了别人的题解才做出来的.题意和题解分析见原文http://blog.csdn.net/lyy289065406/article/details/6698787 这里写一下自己对题目的理解. ...

  5. POJ 3373 Changing Digits

    题目大意: 给出一个数n,求m,使得m的长度和n相等.能被k整除.有多个数符合条件输出与n在每位数字上改变次数最小的.改变次数同样的输出大小最小的.  共同拥有两种解法:DP解法,记忆化搜索的算法. ...

  6. POJ 3548 Restoring the digits

    暴力搜索.注意题目说每个字母对应的数字不同,这句话表明最多只有10个字母,所以暴力DFS绝对不会TLE. #include<cstdio> #include<cstring> ...

  7. ACM : POJ 2676 SudoKu DFS - 数独

    SudoKu Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu POJ 2676 Descr ...

  8. [ACM训练] 算法初级 之 搜索算法 之 广度优先算法BFS (POJ 3278+1426+3126+3087+3414)

    BFS算法与树的层次遍历很像,具有明显的层次性,一般都是使用队列来实现的!!! 常用步骤: 1.设置访问标记int visited[N],要覆盖所有的可能访问数据个数,这里设置成int而不是bool, ...

  9. POJ 2151 Check the difficulty of problems

    以前做过的题目了....补集+DP        Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K ...

随机推荐

  1. 参加Java培训你必须知道的五点真相!

    相信大家都有过到招聘网站投简历.找工作的经历.当一份份简历发出三天后,左等右等连一个电话没有等来,心中不免有些失落,有些焦虑.这个时侯,很多培训机构就会纷纷给你打电话以各种名义让你参加各种IT技能培训 ...

  2. java 基础语法 1

    一.标识符 二.关键字 三.JAVA基础数据类型 3.1. java常量 3.2. java变量 从本质上来讲,变量其实是内存里面的一小块区域,一个程序在运行的时候,实际上这个程序是位于内存里面,然后 ...

  3. maven详解之结构

    maven 父子关系 父项目中打包方式必须是pom  如 <packaging>pom</packaging>,父项目中使用<modules><module& ...

  4. The Nerd Factor SPOJ - MYQ5

    The Nerd Factor Time Limit: 1000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu [Submi ...

  5. 705. New Distinct Substrings spoj(后缀数组求所有不同子串)

    705. New Distinct Substrings Problem code: SUBST1 Given a string, we need to find the total number o ...

  6. Python s12 Day2 笔记及作业

    1. 元组的元素不可修改,但元组的元素的元素可以被修改. 2. name="eric" print(name.center(20, "*") 3. list=[ ...

  7. IIS7中JS、CSS、Image无法显示和加载解决方案

    前两天把机器从Windows7升级到Windows10,IIS也跟着升级了,在获取项目搭载IIS上发现原有的页面中所有的JS.CSS.Image都无法访问,提示500错误,起初以为是IIS没有装好 重 ...

  8. HTML协议详解

    一.实验环境搭建 因agileone很久没有更新,所以安装时需要注意版本.个人验证,如下版本可用: 1.XAMPP 实验版本:XAMPP for Windows Version 1.6.8 下载地址: ...

  9. Python系列之lambda、函数、序列化

    lambda 在python中使用lambda来创建匿名函数,而用def创建的方法是有名称的,除了从表面上的方法名不一样外,python lambda还有哪些和def不一样呢? 1 python la ...

  10. IP报文分片

    1. 最大传输单元(Maximum Transmission Unit,MTU). 以太网帧中的数据长度规定最小46 字节,最大1500 字节,MTU 指数据帧中有效载荷的最大长度,不包括帧首部的长度 ...