首先推荐一篇博客,奇异值分解(SVD)原理详解及推导 - CSDN博客,讲解的很清楚。这里我谈谈自己的理解,方便以后回顾。

  如果把向量理解为空间中的一个元素,那么矩阵可以理解为两个空间上的映射。在线性代数中我们常见的是正交变换,这种变换不会改变向量之间的夹角,可以用坐标系的平移旋转来直观理解。但是对一般的方阵,甚至对更一般的非对称矩阵,这种变化的几何含义又该怎么理解,一直都没有搞清楚。通过奇异值分解能说明这些变化 的实际含义。

  首先我们来看一般的方阵\(M(n*n)\),可以找到一对向量\(x_1,x_2\),在变换前后都是正交的。很明显M的特征向量正好具有这样的性质。至于特征向量有多少则要看矩阵的M的秩。我们设置M的秩为\(k(k<n)\),那么就可以找到k个特征向量\((x_1,x_2,...,x_k)\),采用Gram_Smit方法可以将这k个正交基增广为n个正交基,即n维空间中的一组基底X。然后对空间中任意向量\(\vec{a}\)用X来表示:\(\vec{a}=\{a_1\vec{x_1}+a_2\vec{x_2}+...+a_n\vec{x_n}\}\),然后我们看一下\(Ma\)的分解:

\(Ma=\{x_1,x_2,...,x_n\}*\begin{bmatrix}\lambda_1&&&&&&\\&\lambda_2&&&&&\\&&\ddots&&&&\\&&&\lambda_k&&&\\&&&&0&&\\&&&&&\ddots&\\&&&&&&0\end{bmatrix}*\begin{bmatrix}x_1^T\\x_2^T\\\vdots\\x_n^T\end{bmatrix}*(a_1x_1+a_2x_2+...+a_nx_n)\)

其中\(x_i^Tx_j=\begin{cases}1\text{ if }i=j \\\ 0\text{ if }i\neq j \end{cases}\)

\(Ma=\{x_1,x_2,...,x_n\}*\begin{bmatrix}\lambda_1&&&&&&\\&\lambda_2&&&&&\\&&\ddots&&&&\\&&&\lambda_k&&&\\&&&&0&&\\&&&&&\ddots&\\&&&&&&0\end{bmatrix}*\begin{bmatrix}a_1\\a_2\\\vdots\\a_n\end{bmatrix}\)

\(Ma=\{x_1,x_2,...,x_n\}*\begin{bmatrix}\lambda_1a_1&&&&&&\\&\lambda_2a_2&&&&&\\&&\ddots&&&&\\&&&\lambda_ka_k&&&\\&&&&0&&\\&&&&&\ddots&\\&&&&&&0\end{bmatrix}\)

\(Ma=\lambda_1a_1x_1+\lambda_2a_2x_2+...+\lambda_ka_kx_k\)

从中我们可以看出这种不满秩的方阵所对应的几何变换就是原始向量在特征向量上的分量缩放之后再重组,至于与特征向量垂直的分量直接舍弃了。

大家要注意这里就是一种SVD分解,而不是特征值分解,因为秩小于维度的方阵奇异,不能做特征值分解。但特征值分解也可以看做是满秩的特殊SVD分解,也就是不舍弃任何一个维度上的信息。至于更一般的SVD分解,即矩阵非对称,其含义也是相似的,只不过此时的左奇异矩阵和右奇异矩阵不是对称关系,而且右奇异矩阵中的特征向量是\(M^TM\)的特征向量增广之后的结果,而左奇异矩阵中的特征向量是\(MM^T\)中的特征向量增广之后的。

虽然一般的SVD分解复杂,但本质也是将原空间的向量在特征向量方向上伸缩变换后重组,同时舍弃与特征向量垂直部分的分量。

如果换个角度去想,为什么不满秩的矩阵不可逆,因为非满秩矩阵在变换的过程中丢失了原本的一部分信息,不可逆也是必然的。

这就是我对SVD的理解,也是我第一次用markdown来写博客,感觉挺方便的,特别是对公式的书写。

对SVD奇异值分解的理解的更多相关文章

  1. SVD奇异值分解的基本原理和运用

    SVD奇异值分解: SVD是一种可靠的正交矩阵分解法.可以把A矩阵分解成U,∑,VT三个矩阵相乘的形式.(Svd(A)=[U*∑*VT],A不必是方阵,U,VT必定是正交阵,S是对角阵<以奇异值 ...

  2. SVD奇异值分解的几何物理意义资料汇总

    学习SVD奇异值分解的网上资料汇总: 1. 关于svd的一篇概念文,这篇文章也是后续几篇文章的鼻祖~ http://www.ams.org/samplings/feature-column/fcarc ...

  3. [机器学习]-SVD奇异值分解的基本原理和运用

    SVD奇异值分解: SVD是一种可靠的正交矩阵分解法.可以把A矩阵分解成U,∑,VT三个矩阵相乘的形式.(Svd(A)=[U*∑*VT],A不必是方阵,U,VT必定是正交阵,S是对角阵<以奇异值 ...

  4. 『科学计算_理论』SVD奇异值分解

    转载请声明出处 SVD奇异值分解概述 SVD不仅是一个数学问题,在工程应用中的很多地方都有它的身影,比如前面讲的PCA,掌握了SVD原理后再去看PCA那是相当简单的,在推荐系统方面,SVD更是名声大噪 ...

  5. 简单易学的机器学习算法—SVD奇异值分解

    简单易学的机器学习算法-SVD奇异值分解 一.SVD奇异值分解的定义     假设M是一个的矩阵,如果存在一个分解: 其中的酉矩阵,的半正定对角矩阵,的共轭转置矩阵,且为的酉矩阵.这样的分解称为M的奇 ...

  6. 关于奇异值分解(SVD)的理解

    奇异值分解实际上是将一个矩阵,分解成为两个不同维度(行数和列数)上的正交向量集之间的映射变换,奇异值则是变换时的缩放! 例如上面的矩阵M就是一个5维映射到4维的变换矩阵,而SVD分解得到的奇异值和奇异 ...

  7. SVD分解的理解[转载]

    http://www.bfcat.com/index.php/2012/03/svd-tutorial/ SVD分解(奇异值分解),本应是本科生就掌握的方法,然而却经常被忽视.实际上,SVD分解不但很 ...

  8. Deep Learning基础--SVD奇异值分解

    矩阵奇异值的物理意义是什么?如何更好地理解奇异值分解?下面我们用图片的例子来扼要分析. 矩阵的奇异值是一个数学意义上的概念,一般是由奇异值分解(Singular Value Decomposition ...

  9. SVD分解的理解

    对称阵A 相应的,其对应的映射也分解为三个映射.现在假设有x向量,用A将其变换到A的列空间中,那么首先由U'先对x做变换: 由于正交阵“ U的逆=U‘ ”,对于两个空间来讲,新空间下的“ 基E' 坐标 ...

随机推荐

  1. python 将文件夹内的图片转换成PDF

    import os import stringfrom PIL import Imagefrom reportlab.lib.pagesizes import A4, landscapefrom re ...

  2. 解决linux重启后无法开启nginx问题“var/run/nginx/nginx.pid" no such file or directory问题

    起因:每次重启虚拟机后,var/run/nginx/目录都会被删除,所以无法在这个目录创建nginx.pid文件, 可以自己创建var/run/nginx/目录,然后可以运行,但治标不治本,下次虚拟机 ...

  3. js设置元素class方法小结及classList相关

        给DOM元素设置class是我们在项目中非常容易遇到的,网上的资料和总结也比较多,下面比较全面的整理一下,希望给到大家一些帮助!并引用两种成熟的classList的兼容方法 一.el.setA ...

  4. Git与GitHub学习笔记(八)git如何同时同步提交到码云和GitHub上

    前言: 今天github push代码一直push不上去,打算就备份一份代码带国内开源码云上. Github容易出现的情况是: 国内访问速度比较慢, 如果被墙掉的话,就直接没发使用了 如果开源个PHP ...

  5. ElfJS从入门到精通(一)

    介绍 Elf.js是一个简洁的高效的JavaScript框架.它不仅高度重视用户的体验,也高度重视开发者的体验.在实现当今主流技术的同时,以尽可能原生态的形式展现出来.在如今花样繁多的框架中,你是否感 ...

  6. php isset和empty方法的区别

    我总结了下面几点区别,直接上代码: empty方法: 变量不存在,返回true 变量存在,值为空,返回true 变量存在,值不为空,返回false function empty1(){ //变量不存在 ...

  7. 腾讯云负载均衡CLB的那些“独门利器”

    欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 作者:李想 腾讯人做产品一直是很贴近用户的需求的,腾讯云也不例外.负载均衡器作为公有云上的最基础的网络服务,几乎每家云厂商都会提供,虽然负载均衡 ...

  8. wtforms快速使用和源码分析(基于flask)

    wtforms 和django的form组件大同小异,下面给出一个应用举例以便快速查询. 开始使用 from flask import Flask, render_template, request, ...

  9. MariaDB的"response time"插件

    "响应时间"是衡量数据库性能的常用指标.在MariaDB中可以使用插件"QUERY_RESPONSE_TIME"来获取查询时间区间的统计信息. // 安装插 件 ...

  10. 【读书笔记】【深入理解ES6】#5-解构:使数据访问更便捷

    ES6为对象和数组都添加了解构功能,将数据解构打散的过程变得更简单,可以从打散后更小的部分中获取所需信息. 对象解构 let node = { type: "Identifier" ...