poj1236(强连通缩点)
题意:一些学校联接在一个计算机网络上,学校之间存在软件支援协议,每个学校都有它应支援的学校名单(A学校支援学校B,并不表示B学校一定支援学校A)。当某校获得一个新软件时,无论是直接获得还是通过网络获得,该校都应立即将这个软件通过网络传送给它应支援的学校。因此,一个新软件若想让所有联接在网络上的学校都能使用,只需将其提供给一些学校即可。第一问:至少需要多少份软件,才能使得所有学校都能拥有软件;第二问:如果只用一份软件,那么需要添加多少条变,使得所有学校都能拥有软件。
分析:一个强连通分量中必定能相互连通,肯定能共享一个软件,因此第一问只需求入度为0的强连通分量个数即可。第二问求需要添加多少条变,使得整个图都成为一个强连通,即任意两个学校都可到达,那么取入度为0的个数a和出度为0的个数b中的最大值,因为强连通分量中必定不会有出度为0或入度为0的点,因此首先用边连接入度和出度为0的点,等其中一个完后再任意连接边把出度为0或入度为0的点补完。
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 100000000
#define inf 0x3f3f3f3f
#define eps 1e-6
#define N 110
#define FILL(a,b) (memset(a,b,sizeof(a)))
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define PII pair<int,int>
using namespace std;
struct edge
{
int v,next;
edge(){}
edge(int v,int next):v(v),next(next){}
}e[N*N];
int n,scc,step,top,tot;
int head[N],dfn[N],low[N],belong[N],Stack[N];
int in[N],out[N];
bool instack[N];
void init()
{
tot=;step=;scc=;top=;
FILL(head,-);FILL(dfn,);
FILL(low,);FILL(instack,false);
FILL(in,);FILL(out,);
}
void addedge(int u,int v)
{
e[tot]=edge(v,head[u]);
head[u]=tot++;
}
void tarjan(int u)
{
int v;
dfn[u]=low[u]=++step;
Stack[top++]=u;
instack[u]=true;
for(int i=head[u];~i;i=e[i].next)
{
v=e[i].v;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v])
{
low[u]=min(low[u],dfn[v]);
}
}
if(dfn[u]==low[u])
{
scc++;
do
{
v=Stack[--top];
instack[v]=false;
belong[v]=scc;
}while(v!=u);
}
}
void solve()
{
for(int i=;i<=n;i++)
if(!dfn[i])tarjan(i);
if(scc==)
{
printf("1\n0\n");
return;
}
for(int u=;u<=n;u++)
{
for(int i=head[u];~i;i=e[i].next)
{
int v=e[i].v;
if(belong[v]!=belong[u])
{
out[belong[u]]++;
in[belong[v]]++;
}
}
}
int a=,b=;
for(int i=;i<=scc;i++)
{
if(!in[i])a++;
if(!out[i])b++;
}
printf("%d\n%d\n",a,max(a,b));
}
int main()
{
int u;
while(scanf("%d",&n)>)
{
init();
for(int i=;i<=n;i++)
{
while(scanf("%d",&u)&&u)
addedge(i,u);
}
solve();
}
}
poj1236(强连通缩点)的更多相关文章
- poj1236强连通缩点
题意:给出每个学校的list 代表该学校能链接的其他学校,问1:至少给几个学校资源使所有学校都得到:2:至少加多少个边能让所有学校相互连通: 思路:1:找出缩点后入度为零的点个数 2:找出缩点后入度 ...
- poj1236 强连通缩点
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 15211 Accepted: 60 ...
- poj2553 强连通缩点
The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 10114 Accepted: ...
- hdu 4635 Strongly connected 强连通缩点
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给你一个n个点m条边的图,问在图不是强连通图的情况下,最多可以向图中添多少条边,若图为原来 ...
- poj1236 强连通
题意:有 n 个学校每个学校可以将自己的软件共享给其他一些学校,首先,询问至少将软件派发给多少学校能够使软件传播到所有学校,其次,询问添加多少学校共享关系可以使所有学校的软件能够相互传达. 首先,第一 ...
- BZOJ 1051: [HAOI2006]受欢迎的牛 强连通缩点
题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=1051 题解: 强连通缩点得到DAG图,将图转置一下,对入度为零的点跑dfs看看能不能访问 ...
- hdu 2767 Proving Equivalences 强连通缩点
给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...
- UVA - 11324 The Largest Clique 强连通缩点+记忆化dp
题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每一个点的权值就是当前强连通分量点的个数. /* Tarja ...
- poj-1904(强连通缩点)
题意:有n个王子,每个王子都有k个喜欢的女生,王子挑选喜欢的女生匹配,然后再给你n个王子最开始就定好的匹配,每个王子输出能够结合且不影响其他王子的女生匹配 解题思路:强连通缩点,每个王子与其喜欢的女生 ...
- NOIP2017提高组Day1T3 逛公园 洛谷P3953 Tarjan 强连通缩点 SPFA 动态规划 最短路 拓扑序
原文链接https://www.cnblogs.com/zhouzhendong/p/9258043.html 题目传送门 - 洛谷P3953 题目传送门 - Vijos P2030 题意 给定一个有 ...
随机推荐
- iOS技术开发-人机交互指南之UI设计基础:iOS App Anatomy
第二篇更多的是从技术的角度对iOS界面组成原理进行了简单的解析,篇幅很短,可稍作了解:更多关于iOS开发入门的内容可参考“设计师应该了解的iOS应用开发基础知识”一文.另外,非常感谢各位朋友在微博上的 ...
- qt之正则表达式
原地址:http://blog.csdn.net/phay/article/details/7304455 QRegExp是Qt的正则表达式类.Qt中有两个不同类的正则表达式.第一类为元字符.它表示一 ...
- 用内存流 文件流 资源生成客户端(Delphi开源)
正文:很多木马生成器就是用的内存流和文件流生成客户端的,废话不多说了,代码如下: unit Main; interface usesWindows, Messages, SysUtils, Varia ...
- 强化一下开源库:Synopse
http://synopse.info/fossil/wiki/Synopse+OpenSource 有空要研究一下,只有写在这里,才会时时刻刻提醒自己.
- gbs remotebuild使用说明
本文件从:https://source.tizen.org/documentation/articles/gbs-remotebuild翻译而来. 1 远程构建 使用remotebuild子指令将本地 ...
- ASP.NET - 一般处理程序获取session值
1.要在一般处理程序中获取其他页面的session值,需要引用名空间: using System.Web.SessionState; 2.然后继承一个接口:IRequiresSessionState, ...
- [置顶] 手把手教你iOS消息推送证书生成以及Push消息
iOS推送消息是许多iOS应用都具备的功能,今天在给应用加推送功能,在生成证书的过程中,发生了各种令人蛋痛的事.下面就把步骤拿出来分享下: iOS消息推送的工作机制可以简单的用下图来概括: Provi ...
- vmware 中 ubuntu linux 安装vmware tools
参考官方方法 http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&ex ...
- Documentation | AnsibleWorks
Documentation | AnsibleWorks Welcome to the Ansible documentation! Ansible is an IT automation too ...
- 使用perf生成Flame Graph(火焰图)
具体的步骤参见这里: <flame graph:图形化perf call stack数据的小工具> 使用SystemTap脚本制作火焰图,内存较少时,分配存储采样的数组可能失败,需 ...