题解

考试的时候遇到了这个题,没多想,直接打了优先队列,但没想到分差竟然不是绝对值,自闭了。

正解:

值域很小,所以我们开个桶,维护当前最大值。

如果新加入的值大于最大值,那么它肯定直接被下一个人选走。

如果不大于这个最大值,那么直接选择最大值,同时对最大值的桶减一,如果最大值的桶为零,那么往下跳值域直到一个桶不为零的。

因为这个最大值是单调不增的,所以时间复杂度一次是 \(\mathcal O\rm (n)\) 总的就是 \(\mathcal O\rm (nk)\)。

代码很好打,知道思路后五分钟就能打出来

#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=0;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
}
using IO::read;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
typedef long long ll;
static const int N=1e5+7;
int nm[N],T[N],p,k,n,mx,fg=0,num;
ll ans1,ans2;
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
read(n),read(k);
for (ri i(1);i<=n;p(i)) read(nm[i]);
for (ri i(1);i<=k;p(i)) {
read(p);
ans1=ans2=0;
num=mx=fg=0;
for (ri i(1);i<=p;p(i)) p(T[nm[i]]),mx=cmax(mx,nm[i]);
while(1) {
if (!fg) ans1+=mx;
else ans2+=mx;
fg^=1;
T[mx]-=1;
p(num);
while (!T[mx]) --mx;
p(p);
while (p<=n&&nm[p]>mx) {
if (!fg) ans1+=nm[p];
else ans2+=nm[p];
p(num);
fg^=1;
p(p);
}
if (p<=n) T[nm[p]]+=1;
if (num==n) break;
}
printf("%lld\n",ans1-ans2);
}
return 0;
}
}
int main() {return nanfeng::main();}

NOIP 模拟 $21\; \rm Game$的更多相关文章

  1. NOIP 模拟 $21\; \rm Median$

    题解 \(by\;zj\varphi\) 对于这个序列,可以近似得把它看成随机的,而对于随机数列,每个数的分布都是均匀的,所以中位数的变化可以看作是常数 那么可以维护一个指向中位数的指针,同时维护有多 ...

  2. NOIP 模拟 $21\; \rm Park$

    题解 \(by\;zj\varphi\) 首先,分析一下这个答案:本质上是求在一条路径上,选择了一些点,这些点的贡献是它周围的点权和 - 它上一步的点权 对于一棵树,可以先确定一个根,然后每条路径就可 ...

  3. NOIP模拟3

    期望得分:30+90+100=220 实际得分:30+0+10=40 T1智障错误:n*m是n行m列,硬是做成了m行n列 T2智障错误:读入三个数写了两个%d T3智障错误:数值相同不代表是同一个数 ...

  4. NOIP模拟 1

    NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. #   用  户  名   ...

  5. 2021.5.22 noip模拟1

    这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...

  6. NOIP 模拟 $38\; \rm c$

    题解 \(by\;zj\varphi\) 发现就是一棵树,但每条边都有多种不同的颜色,其实只需要保留随便三种颜色即可. 直接点分治,将询问离线,分成一端为重心,和两端都不为重心的情况. 每次只关心经过 ...

  7. NOIP 模拟 $36\; \rm Cicada 拿衣服$

    题解 \(by\;zj\varphi\) 发现右端点固定时,左端点的 \(min-max\) 单调递减,且对于 \(or\) 和 \(and\) 相减,最多有 \(\rm2logn\)个不同的值,且相 ...

  8. NOIP 模拟 $36\; \rm Dove 打扑克$

    题解 \(by\;zj\varphi\) 引理 对于一个和为 \(n\) 的数列,不同的数的个数最多为 \(\sqrt n\) 证明: 一个有 \(n\) 个不同的数的数列,和最小就是 \(n\) 的 ...

  9. NOIP 模拟 $34\; \rm Equation$

    题解 \(by\;zj\varphi\) 发现每个点的权值都可以表示成 \(\rm k\pm x\). 那么对于新增的方程,\(\rm x_u+x_v=k\pm x/0\) 且 \(\rm x_u+x ...

随机推荐

  1. Jmeter之代理元件&代理配置

    一 jmeter代理服务器添加及网页代理配置 1.1 打开jmeter,添加代理HTTP代理服务器,再添加一个线程组,放在代理服务器的下面. 1.2 代理服务器设置 端口默认8888,目标控制器选择t ...

  2. 浅谈C++11中的多线程(二)

    摘要 本篇文章围绕以下几个问题展开: 进程和线程的区别 何为并发?C++中如何解决并发问题?C++中多线程的基本操作 浅谈C++11中的多线程(一) - 唯有自己强大 - 博客园 (cnblogs.c ...

  3. c语言:解释程序和编译程序

    编译程序和解释程序是程序执行的两种不同执行方式. 编译程序:编译程序的功能是把用高级语言书写的源程序翻译成与之等价的目标程序.编译过程划分成词法分析.语法分析.语义分析.中间代码生成.代码优化和目标代 ...

  4. [刘阳Java]_Spring AOP基于XML配置介绍_第9讲

    基于注解配置的Spring AOP固然简单,但是这节我们会给大家介绍基于XML配置的AOP是如何应用的.为什么这么说了,因为后面我们还会介绍到Spring对Dao操作的事务管理(基于AOP的XML文件 ...

  5. File类与常用IO流第一章File类

    第一章:File类 一.1个重点单词: file:文件:directory:文件夹/目录:path:路径(绝对路径:absolutePath) 二.4个静态成员变量: 1.static String ...

  6. 【有奖互动】HMS Core. Sparkle游戏应用创新沙龙,诚邀您参与

    活动简介 随着互联网基础设施的完善和"宅经济"效应凸显,游戏行业逆势上扬,迎来巨大消费市场.同时,用户需求愈加多样化,如何进一步创新和技术升级.提升核心竞争力已成为游戏开发与运营的 ...

  7. Python + unittest知识点回顾

    postman 安装Newman 先安装node.js,把npm添加到环境变量中. npm install newman --registry=https://registry.npm.taobao. ...

  8. python + Poium 库操作

    1.支持pip安装 pip install poium 2.基本用法 from poium import PageElement,Page,PageElements# 1.poium支持的8种定位方法 ...

  9. vue3如何编写挂载DOM的插件

    vue3 跟 vue2 相比,多了一个 app 的概念,vue3 项目的创建也变成了 // main.jsimport { createApp } from 'vue' import App from ...

  10. PAT乙级:1087 有多少不同的值 (20分)

    PAT乙级:1087 有多少不同的值 (20分) 当自然数 n 依次取 1.2.3.--.N 时,算式 ⌊n/2⌋+⌊n/3⌋+⌊n/5⌋ 有多少个不同的值?(注:⌊x⌋ 为取整函数,表示不超过 x ...