NOIP 模拟 $21\; \rm Game$
题解
考试的时候遇到了这个题,没多想,直接打了优先队列,但没想到分差竟然不是绝对值,自闭了。
正解:
值域很小,所以我们开个桶,维护当前最大值。
如果新加入的值大于最大值,那么它肯定直接被下一个人选走。
如果不大于这个最大值,那么直接选择最大值,同时对最大值的桶减一,如果最大值的桶为零,那么往下跳值域直到一个桶不为零的。
因为这个最大值是单调不增的,所以时间复杂度一次是 \(\mathcal O\rm (n)\) 总的就是 \(\mathcal O\rm (nk)\)。
代码很好打,知道思路后五分钟就能打出来
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=0;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
}
using IO::read;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
typedef long long ll;
static const int N=1e5+7;
int nm[N],T[N],p,k,n,mx,fg=0,num;
ll ans1,ans2;
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
read(n),read(k);
for (ri i(1);i<=n;p(i)) read(nm[i]);
for (ri i(1);i<=k;p(i)) {
read(p);
ans1=ans2=0;
num=mx=fg=0;
for (ri i(1);i<=p;p(i)) p(T[nm[i]]),mx=cmax(mx,nm[i]);
while(1) {
if (!fg) ans1+=mx;
else ans2+=mx;
fg^=1;
T[mx]-=1;
p(num);
while (!T[mx]) --mx;
p(p);
while (p<=n&&nm[p]>mx) {
if (!fg) ans1+=nm[p];
else ans2+=nm[p];
p(num);
fg^=1;
p(p);
}
if (p<=n) T[nm[p]]+=1;
if (num==n) break;
}
printf("%lld\n",ans1-ans2);
}
return 0;
}
}
int main() {return nanfeng::main();}
NOIP 模拟 $21\; \rm Game$的更多相关文章
- NOIP 模拟 $21\; \rm Median$
题解 \(by\;zj\varphi\) 对于这个序列,可以近似得把它看成随机的,而对于随机数列,每个数的分布都是均匀的,所以中位数的变化可以看作是常数 那么可以维护一个指向中位数的指针,同时维护有多 ...
- NOIP 模拟 $21\; \rm Park$
题解 \(by\;zj\varphi\) 首先,分析一下这个答案:本质上是求在一条路径上,选择了一些点,这些点的贡献是它周围的点权和 - 它上一步的点权 对于一棵树,可以先确定一个根,然后每条路径就可 ...
- NOIP模拟3
期望得分:30+90+100=220 实际得分:30+0+10=40 T1智障错误:n*m是n行m列,硬是做成了m行n列 T2智障错误:读入三个数写了两个%d T3智障错误:数值相同不代表是同一个数 ...
- NOIP模拟 1
NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. # 用 户 名 ...
- 2021.5.22 noip模拟1
这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...
- NOIP 模拟 $38\; \rm c$
题解 \(by\;zj\varphi\) 发现就是一棵树,但每条边都有多种不同的颜色,其实只需要保留随便三种颜色即可. 直接点分治,将询问离线,分成一端为重心,和两端都不为重心的情况. 每次只关心经过 ...
- NOIP 模拟 $36\; \rm Cicada 拿衣服$
题解 \(by\;zj\varphi\) 发现右端点固定时,左端点的 \(min-max\) 单调递减,且对于 \(or\) 和 \(and\) 相减,最多有 \(\rm2logn\)个不同的值,且相 ...
- NOIP 模拟 $36\; \rm Dove 打扑克$
题解 \(by\;zj\varphi\) 引理 对于一个和为 \(n\) 的数列,不同的数的个数最多为 \(\sqrt n\) 证明: 一个有 \(n\) 个不同的数的数列,和最小就是 \(n\) 的 ...
- NOIP 模拟 $34\; \rm Equation$
题解 \(by\;zj\varphi\) 发现每个点的权值都可以表示成 \(\rm k\pm x\). 那么对于新增的方程,\(\rm x_u+x_v=k\pm x/0\) 且 \(\rm x_u+x ...
随机推荐
- buu 内涵软件
一.无壳. 并且是32位程序, 二.用ida静态调试一下. 这里我脑子发热啊,flag已经在眼前,活生生被我放跑了,靠,我直接搜索字符串,然后就一脸懵逼的,进入了很多不知名的函数,就炸了,看了wp才知 ...
- 修改gitlab默认的nginx
目录 1. 修改gitlab的配置文件 2. nginx配置 3. 重载 前言: 本文将介绍,如何禁用gitlab自带的nginx,用已经安装的nginx提供web服务. 1. 修改gitlab的配置 ...
- VMware Esxi开通SSH功能
ESXi 5.5是直接安装在物理主机上的一个虚拟机系统,本质上是一个Linux系统.平时可以通过VMware Client端或者VMware vCenter进行管理,但对于一些特殊的VMware命令或 ...
- 【011】JavaSE面试题(十一):多线程(1)
第一期:Java面试 - 100题,梳理各大网站优秀面试题.大家可以跟着我一起来刷刷Java理论知识 [011] - JavaSE面试题(十一):多线程(1) 第1问:线程和进程的区别? 进程:具有一 ...
- 浅析vue-cli脚手架命令的执行过程
上一篇文章,已经大致了解脚手架是什么以及脚手架是如何工作的.接下来,稍微深入一下脚手架的工作过程(以vue-cli为例).首先抛出3个问题: 1.明明全局安装的是@vue/cli,最后执行的命令却是v ...
- 在 Intenseye,为什么我们选择 Linkerd2 作为 Service Mesh 工具(Part.2)
在我们 service mesh 之旅的第一部分中,我们讨论了"什么是服务网格以及我们为什么选择 Linkerd2?".在第二部分,我们将讨论我们面临的问题以及我们如何解决这些问题 ...
- windows10激活方法
原文转自:http://www.ylmfwin100.com/ylmf/8643.html 现在市面上大致有两种主流激活方法,一种是通过激活码来激活,另外一种是通过激活工具来激活.但是激活工具有个弊端 ...
- nginx 的安装、优化、服务器集群
一.安装 下载地址:http://nginx.org 找到 stable 稳定版 安装准备:nginx 依赖于pcre(正则)库,如果没有安装pcre先安装 yum install pcre pcr ...
- 从零开始学习JAVA(入门基础)
目录 博主从零开始学习JAVA(入门基础) 1.搭建JAVA开发环境 卸载JDK(未安装的请忽略) 安装JDK 2.编程语言中,何为编译型与解释型 编译型 解释型 3.第一个JAVA应用程序 4.JA ...
- 卷向字节码-Java异常到底是怎么被处理的?
你好呀,我是why,你也可以叫我歪歪. 比如下面这位读者: 他是看了我<神了!异常信息突然就没了?>这篇文章后产生的疑问. 既然是看了我的文章带来的进一步思考,恰巧呢,我又刚好知道. 虽然 ...