今天将代码以Spark On Yarn Cluster的方式提交,遇到了很多很多问题.特地记录一下.

代码通过--master yarn-client提交是没有问题的,但是通过--master yarn-cluster总是报错,而且是各种各样的错误.

1.ClassCastException

java.lang.ClassCastException: cannot assign instance of scala.collection.immutable.List$SerializationProxy to field org.apache.spark.rdd.RDD.org$apache$spark$rdd$RDD$$dependencies_ of type scala.collection.Seq in instance of org.apache.spark.rdd.MapPartitionsRDD
at java.io.ObjectStreamClass$FieldReflector.setObjFieldValues(ObjectStreamClass.java:2233)
at java.io.ObjectStreamClass.setObjFieldValues(ObjectStreamClass.java:1405)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2284)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:2202)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:2060)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1567)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2278)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:2202)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:2060)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1567)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:427)
...

这个bug通常会提示我们是否将Jar包部署到所有的slave上了,但是yarn-cluster一般会通过RPC框架分发Jar包,即使将Jar包一一部署到slave机器中,并没有任何效果,仍然报这个错误.

开始通过google,stackoverflow查找相关信息.产生这种问题的原因可谓错综复杂,有的说类加载器的问题,有的说UDF的问题.其中有一个引起了我的注意:

如果在代码中引用了Java代码,最好将代码打成的Jar放在$SPARK_HOME/jars目录下,确保jar包是在classpath下.

按照这个解答的方式安排了一下jar包,然后重新执行.通过yarn的web页面观察运行日志,没有这个报错了.但是任务失败了,报了另一个错误:

2.FileNotFoundException

java.io.FileNotFoundException: File does not exist: hdfs://master:9000/xxx/xxxx/xxxx/application_1495996836198_0003/__spark_libs__1200479165381142167.zip
at org.apache.hadoop.hdfs.DistributedFileSystem$22.doCall(DistributedFileSystem.java:1309)
at org.apache.hadoop.hdfs.DistributedFileSystem$22.doCall(DistributedFileSystem.java:1301)
at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
...

这个错误就让我很熟悉了,我在代码创建sparkSession的时候设置了master,master地址是spark masterurl,所以当在yarn上提交任务的时候,最终会按照代码中的配置开始standalone模式,这会造成混乱,所以会产生一些莫名其妙的bug.

修改一下代码重新打包就好了

解决办法:

val spark = SparkSession.builder()
// .master("spark://master:7077") //注释掉master的设置
.appName("xxxxxxx")
.getOrCreate();

中间还遇到了其他很多bug,比如无法反序列化

SerializerInstance.deserialize(JavaSerializer.scala:114)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:85)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)

再或者这种类型转换错误

org.apache.spark.SparkException: Task failed while writing rows
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:272)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:191)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:190)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.ClassCastException: scala.Tuple2 cannot be cast to com.xxx.xxxxx.ResultMerge

这些报错通过注释掉master的设置后都会消失.

各种异常交错出现,这是很容易让人迷惑的.

幸好最后报了一个熟悉的错误java.io.FileNotFoundException,问题才得以解决.

3.HDFS的bug

报错如下:

java.io.IOException: Cannot obtain block length for LocatedBlock{BP-1729427003-192.168.1.219-1527744820505:blk_1073742492_1669; getBlockSize()=24; corrupt=false; offset=0; locs=[DatanodeInfoWithStorage[192.168.1.219:50010,DS-e478076c-c3aa-4870-adce-7ffd6a49efe4,DISK], DatanodeInfoWithStorage[192.168.1.21:50010,DS-af806575-7404-45fd-bae0-0fcc59de7598,DISK]]}

这是因为在操作一个正在写入的hdfs文件,通常可能出现在flume写入的文件未正常关闭,或者hdfs重启导致的文件问题.

可以通过命令查看一下哪些文件是OPENFORWRITTING或者MISSING:

hadoop fsck / -openforwrite | egrep "MISSING|OPENFORWRITE"

通过上面的命令可以确定具体文件,然后将其删除即可.

Spark On Yarn的各种Bug的更多相关文章

  1. Spark on YARN的部署

    Spark on YARN的原理就是依靠yarn来调度Spark,比默认的Spark运行模式性能要好的多,前提是首先部署好hadoop HDFS并且运行在yarn上,然后就可以开始部署spark on ...

  2. 配置Spark on YARN集群内存

    参考原文:http://blog.javachen.com/2015/06/09/memory-in-spark-on-yarn.html?utm_source=tuicool 运行文件有几个G大,默 ...

  3. Spark on Yarn 学习(一)

    最近看到明风的关于数据挖掘平台下实用Spark和Yarn来做推荐的PPT,感觉很赞,现在基于大数据和快速计算方面技术的发展很快,随着Apache基金会上发布的一个个项目,感觉真的新技术将会不断出现在大 ...

  4. Spark on Yarn:任务提交参数配置

    当在YARN上运行Spark作业,每个Spark executor作为一个YARN容器运行.Spark可以使得多个Tasks在同一个容器里面运行. 以下参数配置为例子: spark-submit -- ...

  5. 运行 Spark on YARN

    运行 Spark on YARN Spark 0.6.0 以上的版本添加了在yarn上执行spark application的功能支持,并在之后的版本中持续的 改进.关于本文的内容是翻译官网的内容,大 ...

  6. Spark On YARN使用时上传jar包过多导致磁盘空间不够。。。

    今天测试过程中发现YARN Node变成Unhealthy了,后来定位到硬盘空间不够..... 通过查找大于100M的文件时发现有N多个spark-assembly-1.4.0-SNAPSHOT-ha ...

  7. Spark on YARN两种运行模式介绍

    本文出自:Spark on YARN两种运行模式介绍http://www.aboutyun.com/thread-12294-1-1.html(出处: about云开发)   问题导读 1.Spark ...

  8. Spark源码系列(七)Spark on yarn具体实现

    本来不打算写的了,但是真的是闲来无事,整天看美剧也没啥意思.这一章打算讲一下Spark on yarn的实现,1.0.0里面已经是一个stable的版本了,可是1.0.1也出来了,离1.0.0发布才一 ...

  9. Apache Spark源码走读之8 -- Spark on Yarn

    欢迎转载,转载请注明出处,徽沪一郎. 概要 Hadoop2中的Yarn是一个分布式计算资源的管理平台,由于其有极好的模型抽象,非常有可能成为分布式计算资源管理的事实标准.其主要职责将是分布式计算集群的 ...

随机推荐

  1. MD5函数(公共方法)

    1 #region MD5函数 2 /// <summary> 3 /// MD5函数 4 /// </summary> 5 /// <param name=" ...

  2. STL 去重 unique

    一.unique函数 类属性算法unique的作用是从输入序列中"删除"所有相邻的重复元素. 该算法删除相邻的重复元素,然后重新排列输入范围内的元素,并且返回一个迭代器(容器的长度 ...

  3. JAVA笔记7__接口应用/Object类/简单工厂模式/静态代理模式/适配器模式

    /** * 接口应用 */ public class Main { public static void main(String[] args) { Person p = new Person(&qu ...

  4. 精心整理Java微服务最全面试题集(含答案)

    微服务架构相关 大型网站架构演变过程 网站架构演变演变过程 传统架构 → 分布式架构 → SOA架构 → 微服务架构 什么是分布式架构 分布式架构就是将传统结构按照模块进行拆分,不同的人负责不同的模块 ...

  5. kail入侵xp实例

    Kali的IP地址是192.168.0.112 Windows XP的IP地址是192.168.0.108 本文演示怎么使用Metasploit入侵windows xp sp3. 启动msfconso ...

  6. 你说说RPC的一个请求的流程是怎么样的?

    前言 面试的时候经常被问到RPC相关的问题,例如:你说说RPC实现原理.让你实现一个RPC框架应该考虑哪些地方.RPC框架基础上发起一个请求是怎样一个流程等等.所以这次我就总结一波RPC的相关知识点, ...

  7. Swoft+Docker

    Docker 以下纯属个人理解: Docker就是一种虚拟机,将环境打包成镜像,等于做了一个Linux系统裁剪. 镜像就是我们安装系统的镜像,里面包含了你的代码和环境. 容器就是一个虚拟机,你可以用一 ...

  8. [python]selenium常用的操作

    浏览器 1.火狐浏览器 br = webdriver.Firefox() #最大化窗口br.maximize_window() br.get('http://baidu.com') 2.谷歌浏览器 b ...

  9. Oracle Error while trying to retrieve text for error ORA-01804

    我在Linux上编译C++程序,有这个错误. 本机情况: Linux上Oracle的安装情况,服务器上有两个Client版本.我在Makefile中使用了高版本的动态库. 原因: 1.首先排查下 tn ...

  10. python及pygame雷霆战机游戏项目实战01 控制飞机

    入门 在这个系列中,将制作一个雷霆战机游戏. 首先,将游戏设置修改一下: WIDTH = 480 HEIGHT = 600 FPS = 60 玩家精灵 要添加的第一件事是代表玩家的精灵.最终,这将是一 ...