Maclaurin D, Duvenaud D, Adams R P, et al. Gradient-based Hyperparameter Optimization through Reversible Learning[J]. arXiv: Machine Learning, 2015.

@article{maclaurin2015gradient-based,

title={Gradient-based Hyperparameter Optimization through Reversible Learning},

author={Maclaurin, Dougal and Duvenaud, David and Adams, Ryan P},

journal={arXiv: Machine Learning},

year={2015}}

本文给出了利用梯度更新超参数的方法(低memory消耗).

主要内容

假设第\(t=1,\ldots, T\)次训练的损失函数为\(L(\mathbf{w}, \mathbf{\theta}, t)\), 其中\(\mathbf{w}\)是网络的权重, \(\mathbf{\theta}\)是指超参数.

进行一次meta-iteration(即T次训练之后), 我们利用验证集对其验证, 设其损失为\(f(\mathbf{w})\), 我们知道, 因为\(\mathbf{w}\)实际上是\(\mathbf{\theta}\)的函数, 我们求\(f(\mathbf{w})\)关于\(\mathbf{\theta}\)的梯度, 并更新\(\mathbf{\theta}\).

但是如果只是单纯地反向转递梯度,我们需要构建一个包含\(t=1,\ldots,T\)的图, 这是十分消耗memory的. 本文的贡献便是提出一种算法来解决此问题.

下图为利用SGD(带momentum)训练权重\(\mathbf{w}\)的过程:

算法

假设meta-iteration后的权重为\(\mathbf{w}_T\), 我们利用此来一步一步地恢复前面的信息, 并且逐步计算有关超参数的导数.

算法中, 6, 7, 8实际上是SGD的一个逆行, 用以恢复\(\mathbf{w}_{t-1}, \mathbf{g}_t,\mathbf{v}_{t-1}\), 注意到, 9, 10计算了俩次\(d\mathbf{v}\), 实际上第一次作为中间变量以计算超参数的导数, 后一次是为下一次进行准备(算法中的公式都是容易推出的).

需要注意的是, 我们在恢复的过程中用到了\(\nabla\)甚至\(\nabla \nabla\), 个人认为这些是在SGD训练的时候保存下来的.

finite precision arithmic

实验

3.1

Meta-optimization strategies: 将学习率作为超参数;

How smooth are hypergradients?: 探究损失关于超参数是否光滑(即导数是否连续).

Optimizing weight initialization scales: 将初始化超参数的scale作为超参数.

3.2

将正则化参数作为超参数.

3.3

将训练样本作为超参数.

3.4

...

3.5

如何优化网络结构, 因为网络结构是一种离散化的超参数, 所以...

Gradient-based Hyperparameter Optimization through Reversible Learning的更多相关文章

  1. [CS231n-CNN] Training Neural Networks Part 1 : activation functions, weight initialization, gradient flow, batch normalization | babysitting the learning process, hyperparameter optimization

    课程主页:http://cs231n.stanford.edu/   Introduction to neural networks -Training Neural Network ________ ...

  2. DAGs with NO TEARS: Continuous Optimization for Structure Learning

    DAGs with NO TEARS: Continuous Optimization for Structure Learning 目录 DAGs with NO TEARS: Continuous ...

  3. 论文笔记系列-Speeding Up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves

    I. 背景介绍 1. 学习曲线(Learning Curve) 我们都知道在手工调试模型的参数的时候,我们并不会每次都等到模型迭代完后再修改超参数,而是待模型训练了一定的epoch次数后,通过观察学习 ...

  4. Federated Optimization: Distributed Machine Learning for On-Device Intelligence

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1610.02527v1 [cs.LG] 8 Oct 2016 坐标下降法:https://blog.csdn.net/qq_ ...

  5. 斯坦福大学公开课机器学习:梯度下降运算的学习率a(gradient descent in practice 2:learning rate alpha)

    本章节主要讲怎么确定梯度下降的工作是正确的,第二是怎么选择学习率α,如下图所示: 上图显示的是梯度下降算法迭代过程中的代价函数j(θ)的值,横轴是迭代步数,纵轴是j(θ)的值 如果梯度算法正常工作,那 ...

  6. A novel multi-swarm particle swarm optimization with dynamic learning strategy(一种新颖的具有动态学习策略的多种群粒子群优化算法)

    1.核心 在每个子种群的粒子被划分为普通粒子(ordinary particles)和交流粒子(communication particles),在每次迭代过程中,不同的粒子执行不同的进化操作.普通粒 ...

  7. How to Evaluate Machine Learning Models, Part 4: Hyperparameter Tuning

    How to Evaluate Machine Learning Models, Part 4: Hyperparameter Tuning In the realm of machine learn ...

  8. arXiv 2015深度学习年度十大论文

    由康奈尔大学运营维护着的arXiv网站,是一个在学术论文还未被出版时就将之向所有人开放的地方.这里汇聚了无数科学领域中最前沿的研究,机器学习也包括在内.它反映了学术界当前的整体趋势,我们看到,近来发布 ...

  9. 机器学习超参数优化算法-Hyperband

    参考文献:Hyperband: Bandit-Based Configuration Evaluation for Hyperparameter Optimization I. 传统优化算法 机器学习 ...

随机推荐

  1. A Child's History of England.2

    They made boats of basket-work, covered with the skins of animals, but seldom, if ever, ventured far ...

  2. day10 负载均衡

    day10 负载均衡 负载均衡反向代理 正向代理:即是客户端代理, 代理客户端, 服务端不知道实际发起请求的客户端. # (内部上网) 客户端 <-> 代理 -> 服务端 反向代理即 ...

  3. 虚拟机中安装centos系统的详细过程

    linux-centos的安装 检查电脑是否开启虚拟化,只有开启虚拟化才能安装虚拟机 新建虚拟机 鼠标点进去,选中红框所示,回车 登录: 输入默认用户名(超级管理员 root) 密码:安装时设置的密码

  4. RAC(Reactive Cocoa)常见的类

    导入ReactiveCocoa框架 在终端,进入Reactive Cocoa文件下 创建podfile 打开该文件 并配置 use_frameworks! pod 'ReactiveCocoa', ' ...

  5. Linux下查看JDK安装路径

    在安装好Git.JDK和jenkins之后,就需要在jenkins中进行对应的设置,比如在全局工具配置模块,需要写入JDK的安装路径. 这篇博客,介绍几种常见的在Linux中查看JDK路径的方法... ...

  6. linux 让.net 控制台后台运行

    命令     nohup 你的shell命令  & 例如    nohup dotnet  MQTTClient.dll & 输入完成后,终端会有提示 这时再按下回车 回到shell命 ...

  7. 如何为Dash/Zeal生成c++ 文档: 以abseil文档为例

    目录 1. 软件安装 2 Sample源文件下载: 3. 生成步骤 3.1 使用doxygen生成html文件 3.2 使用docsetutil 生成 dash/Zeal 格式 1. 软件安装: 1. ...

  8. 《手把手教你》系列技巧篇(五十一)-java+ selenium自动化测试-字符串操作-下篇(详解教程)

    1.简介 自动化测试中进行断言的时候,我们可能经常遇到的场景.从一个字符串中找出一组数字或者其中的某些关键字,而不是将这一串字符串作为结果进行断言.这个时候就需要我们对字符串进行操作,宏哥这里介绍两种 ...

  9. Tableau如何绘制双柱折线组合图2

    一.数据源准备 二.创建计算字段月度-拖拽至列-右键-精确日期 CASE[指标] WHEN "同期"then DATETRUNC('day',[日期])-5 WHEN " ...

  10. 调配资源(Project)

    <Project2016 企业项目管理实践>张会斌 董方好 编著 当资源过度分配了,肿么办? 比如前面的例子,某吃货甲,一天之内给他分配了9.6个工时的吃量,这怎么可以呢,让人加班是不厚道 ...