Codeforces 1067E - Random Forest Rank(找性质+树形 dp)
一道不知道能不能算上自己 AC 的 D1E(?)
挺有意思的结论题,结论倒是自己猜出来了,可根本不会证(
开始搬运题解 ing:
碰到这样的题我们肯定要考虑一个图邻接矩阵的秩是什么。显然根据我们幼儿园就学过的线性代数,对于一个矩阵 \(A\) 而言,其行列式就是其最大的子式满足其行列式不等于 \(0\),也就是任取若干行 & 若干列,它们的交组成的矩阵行列式不等于 \(0\),不难发现对于一个森林的邻接矩阵而言,对于任意一个子式,如果它的行列式不等于 \(0\),那么它的行、列下标的并组成的主子式的行列式肯定也非零,因此我们只用考虑其主子式就行了,而主子式显然可以看作导出子图的邻接矩阵,因此我们接下来只需探究什么样的矩阵行列式非零。
考虑行列式的展开式:
\]
显然对于后面的 \(\prod\) 而言,只有 \((i,p_i)\) 存在边相连时 \(A_{i,p_i}\) 才非零,而由于图无自环,如果 \(\exists i,s.t.i=p_i\) 必然有 \(p\) 对 \(\det A\) 的贡献为 \(0\),同理,如果 \(p\) 存在一个大小 \(\ge 3\) 的置换环,那么由于图是一个森林,不可能这些点之间两两相邻的点都存在边,对 \(\det A\) 的贡献也为 \(0\)。也就是说只有 \(p\) 中所有置换环大小都为二,也就是我们选出的是一个形如的 \((i,p_i)\) 的完美匹配,而由于图是一个森林,因此完美匹配个数肯定 \(\le 1\),具体构造方案就是从叶子开始贪心地匹配,如果匹配不了就不存在完美匹配,因此 \(\det A\) 非零的充要条件是图存在完美匹配,因此我们可以得到这样一个性质:
Observation. 对于图 \(G\) 而言,\(G\) 邻接矩阵的秩是 \(G\) 最大匹配的大小 \(\times 2\)。
有了这个性质之后就可以 DP 了。\(way_{i,0/1}\) 表示钦定以 \(i\) 为根的子树内的边,并且在最大匹配中 \(i\) 选/没选的方案数,\(dp_{i,0/i}\) 表示钦定以 \(i\) 为根的子树内的边,并且在最大匹配中 \(i\) 选/没选的所有方案中最大匹配个数的总和。转移就分 \((i,j)\) 的边选/不选,然后分类讨论一下即可,复杂度 \(\mathcal O(n)\)
const int MAXN=5e5;
const int MOD=998244353;
int n,hd[MAXN+5],to[MAXN*2+5],nxt[MAXN*2+5],ec=0;
void adde(int u,int v){to[++ec]=v;nxt[ec]=hd[u];hd[u]=ec;}
int dp[MAXN+5][2],way[MAXN+5][2];
void dfs(int x,int f){
way[x][0]=1;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(y==f) continue;dfs(y,x);
static int tmp_dp[2]={0},tmp_way[2]={0};
memset(tmp_dp,0,sizeof(tmp_dp));
memset(tmp_way,0,sizeof(tmp_way));
tmp_way[0]=(1ll*way[x][0]*(way[y][0]+way[y][1]))%MOD;
tmp_dp[0]=(1ll*dp[x][0]*(way[y][0]+way[y][1])+1ll*(dp[y][0]+dp[y][1])*way[x][0])%MOD;
tmp_way[1]=(1ll*way[x][1]*(way[y][0]+way[y][1])*2)%MOD;
tmp_dp[1]=2ll*(1ll*dp[x][1]*(way[y][0]+way[y][1])+1ll*(dp[y][0]+dp[y][1])*way[x][1])%MOD;
tmp_way[0]=(tmp_way[0]+1ll*way[x][0]*way[y][1])%MOD;
tmp_dp[0]=(tmp_dp[0]+1ll*dp[x][0]*way[y][1]+1ll*dp[y][1]*way[x][0])%MOD;
tmp_way[1]=(tmp_way[1]+1ll*way[x][0]*way[y][0])%MOD;
tmp_dp[1]=(tmp_dp[1]+1ll*dp[x][0]*way[y][0]+1ll*dp[y][0]*way[x][0]+1ll*way[x][0]*way[y][0])%MOD;
for(int i=0;i<2;i++) dp[x][i]=tmp_dp[i],way[x][i]=tmp_way[i];
}
// printf("%d %d %d %d %d\n",x,dp[x][0],dp[x][1],way[x][0],way[x][1]);
}
int main(){
scanf("%d",&n);
for(int i=1,u,v;i<n;i++) scanf("%d%d",&u,&v),adde(u,v),adde(v,u);
dfs(1,0);printf("%d\n",2ll*(dp[1][0]+dp[1][1])%MOD);
return 0;
}
Codeforces 1067E - Random Forest Rank(找性质+树形 dp)的更多相关文章
- CodeForces 1067E Random Forest Rank
题意 给定一棵 \(n\) 个节点的树,每条边有 \(\frac{1}{2}\) 的概率出现,这样会得出一个森林,求这个森林的邻接矩阵 \(A\) 的秩 \(\operatorname{rank} A ...
- Codeforces 348E 树的中心点的性质 / 树形DP / 点分治
题意及思路:http://ydc.blog.uoj.ac/blog/12 在求出树的直径的中心后,以它为根,对于除根以外的所有子树,求出子树中的最大深度,以及多个点的最大深度的lca,因为每个点的最长 ...
- CF1067E Random Forest Rank
CF1067E Random Forest Rank 可以证明: 一个树的邻接矩阵的秩,等于最大匹配数*2(虽然我只能证明下界是最大匹配) 而树的最大匹配可以贪心, 不妨用DP模拟这个过程 f[x][ ...
- Codeforces 1097G Vladislav and a Great Legend [树形DP,斯特林数]
洛谷 Codeforces 这题真是妙的很. 通过看题解,终于知道了\(\sum_n f(n)^k\)这种东西怎么算. update:经过思考,我对这题有了更深的理解,现将更新内容放在原题解下方. ...
- Codeforces 980F Cactus to Tree 仙人掌 Tarjan 树形dp 单调队列
原文链接https://www.cnblogs.com/zhouzhendong/p/CF980F.html 题目传送门 - CF980F 题意 给定一个 $n$ 个节点 $m$ 条长为 $1$ 的边 ...
- codeforces 816 E. Karen and Supermarket(树形dp)
题目链接:http://codeforces.com/contest/816/problem/E 题意:有n件商品,每件有价格ci,优惠券di,对于i>=2,使用di的条件为:xi的优惠券需要被 ...
- codeforces 161 D. Distance in Tree(树形dp)
题目链接:http://codeforces.com/problemset/problem/161/D 题意:给出一个树,问树上点到点的距离为k的一共有几个. 一道简单的树形dp,算是一个基础题. 设 ...
- [CQOI2009]叶子的染色【性质+树形Dp】
Online Judge:Bzoj1304,Luogu P3155 Label:无根树,树形Dp 题目描述 给定一棵\(N\)个节点的无根树,它一共有\(K\)个叶子节点.你可以选择一个度数大于1的节 ...
- Codeforces 1606F - Tree Queries(虚树+树形 dp)
Codeforces 题面传送门 & 洛谷题面传送门 显然我们选择删除的点连同 \(u\) 会形成一个连通块,否则我们如果选择不删除不与 \(u\) 在同一连通块中的点,答案一定更优. 注意到 ...
随机推荐
- 源码解析-Abp vNext丨LocalEventBus
前言 基础篇已经更新完了,从本篇开始我们进入,中级篇(学习部分源代码)我会挑一些我个人认为比较重要的知识点结合部分开源项目进行源码讲解,咱们废话不说直接上车. Abp vNext的事件总线分2种,一种 ...
- kivy 选择框
from kivy.app import App from kivy.uix.boxlayout import BoxLayout from kivy.lang import builder # 注册 ...
- djago后台管理页面
from django.contrib import admin from blogtest.models import * #修改网页title和站点header.+ admin.site.site ...
- [技术博客] 通过ItemTouchHelper实现侧滑删除功能
通过ItemTouchHelper实现侧滑删除功能 一.效果 二.具体实现 demo中演示的这种左滑删除的效果在手机APP中比较常用,安卓也为我们提供了专门的辅助类ItemTouchHelper来帮助 ...
- SpringBoot小知识点
记录SpringBoot的小知识点 一.在 Spring 上下文刷新之前设置一些自己的环境变量 1.实现 EnvironmentPostProcessor 接口 2.spring.factories ...
- Noip模拟12 2021.7.12
T1 interval 亏得昨天晚上改掉了T3并且理解了单调栈,今天一扫这题目就知道要用啥了. 先预处理出以a[i]为最大值的最大左右区间.然后再将a[i]取%!!!是的,要不然会影响单调栈的使用.. ...
- AFO记
希望永远也不要动笔写这个. 发以自勉
- 通过Envoy实现.NET架构的网关
什么是Gateway 在微服务体系结构中,如果每个微服务通常都会公开一组精细终结点,这种情况可能会有以下问题 如果没有 API 网关模式,客户端应用将与内部微服务相耦合. 在客户端应用中,单个页面/屏 ...
- RocketMQ源码详解 | Broker篇 · 其二:文件系统
概述 在 Broker 的通用请求处理器将一个消息进行分发后,就来到了 Broker 的专门处理消息存储的业务处理器部分.本篇文章,我们将要探讨关于 RocketMQ 高效的原因之一:文件结构的良好设 ...
- shell 脚本控制命令的执行顺序
&&,||,(),{},& 五个符号的运用shell脚本执行命令的时候,有时候会依赖于前一个命令是否执行成功.而&&和||就是用来判断前一个命令执行效果的. 也 ...