[bzoj3944] sum [杜教筛模板]
题面:
就是让你求$ \varphi\left(i\right) $以及$ \mu\left(i\right) $的前缀和
思路:
就是杜教筛的模板
我们把套路公式拿出来:
$ g\left(1\right)S\left(n\right)=\sum_{i=1}^{n}\left(g\ast f\right)\left(i\right)-\sum_{i=2}^{n}g\left(i\right)S\left(\frac ni\right) $
其中函数$f$分别为$\varphi$以及$\mu$
对于这两个函数有两个非常好用的卷积公式:
$\left(\mu\ast I\right)=\varepsilon$
$\left(\varphi\ast I\right)=id$
那么我们设g(x)=1,然后把g(x)带进去,两个前缀和就变成了这样的:
$S\left(n\right)=1-\sum_{i=2}^{n}S\left(\frac ni\right)$这个是$\mu$
$S\left(n\right)=\frac{n\ast\left(n+1\right)}{2}-\sum_{i=2}^{n}S\left(\frac ni\right)$这个是$\varphi$
然后递归,记忆化求和就可以了
注意最好写成一个递归处理两个答案......不然会T成狗
Code:
这里提供两个函数分开的版本,方便查看
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#define ll long long
using namespace std;
inline ll read(){
ll re=,flag=;char ch=getchar();
while(ch>''||ch<''){
if(ch=='-') flag=-;
ch=getchar();
}
while(ch>=''&&ch<='') re=(re<<)+(re<<)+ch-'',ch=getchar();
return re*flag;
}
ll phi[],pri[],tot=,mu[],n;bool vis[];
void init(){
ll i,j,k;phi[]=mu[]=;phi[]=;
for(i=;i<=;i++){
if(!vis[i]){
pri[++tot]=i;phi[i]=i-;mu[i]=-;
}
for(j=;j<=tot;j++){
k=i*pri[j];if(k>) break;
vis[k]=;
if(i%pri[j]==){
phi[k]=phi[i]*pri[j];
mu[k]=;
break;
}
phi[k]=phi[i]*phi[pri[j]];
mu[k]=-mu[i];
}
}
for(i=;i<=;i++) phi[i]=phi[i-]+phi[i],mu[i]=mu[i-]+mu[i];
}
ll sum1(ll x){return x*(x+)/;}
ll v1[],v2[],m1[],m2[];
ll S1(ll x){
if(x<=) return phi[x];
ll re=sum1(x);ll i,j,t=n/x;
if(v1[t]) return m1[t];
for(i=;i<=x;i=j+){
j=x/(x/i);
re-=(j-i+)*S1(x/i);
}
v1[t]=;
return m1[t]=re;
}
ll S2(ll x){
if(x<=) return mu[x];
ll re=,i,j,t=n/x;
if(v2[t]) return m2[t];
for(i=;i<=x;i=j+){
j=x/(x/i);
re-=(j-i+)*S2(x/i);
}
v2[t]=;
return m2[t]=re;
}
int main(){
ll T=read();init();
while(T--){
n=read();memset(v1,,sizeof(v1));memset(v2,,sizeof(v2));
printf("%lld %lld\n",S1(n),S2(n));
}
}
[bzoj3944] sum [杜教筛模板]的更多相关文章
- [BZOJ3944]Sum(杜教筛)
3944: Sum Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 6201 Solved: 1606[Submit][Status][Discuss ...
- 【Bzoj3944】杜教筛模板(狄利克雷卷积搞杜教筛)
题目链接 哇杜教筛超炫的 有没有见过$O(n^\frac{2}{3})$求欧拉函数前缀和的算法?没有吧?蛤蛤蛤 首先我们来看狄利克雷卷积是什么 首先我们把定义域是整数,陪域是复数的函数叫做数论函数. ...
- bzoj3944: Sum 杜教筛板子题
板子题(卡常) 也可能是用map太慢了 /************************************************************** Problem: 3944 Us ...
- BZOJ3944: Sum(杜教筛模板)
BZOJ3944: Sum(杜教筛模板) 题面描述 传送门 题目分析 求\(\sum_{i=1}^{n}\mu(i)\)和\(\sum_{i=1}^{n}\varphi(i)\) 数据范围线性不可做. ...
- 3944: Sum[杜教筛]
3944: Sum Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3471 Solved: 946[Submit][Status][Discuss] ...
- 洛谷P4213 Sum(杜教筛)
题目描述 给定一个正整数N(N\le2^{31}-1)N(N≤231−1) 求ans_1=\sum_{i=1}^n\phi(i),ans_2=\sum_{i=1}^n \mu(i)ans1=∑i=1 ...
- bzoj 3944 Sum —— 杜教筛
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3944 杜教筛入门题! 看博客:https://www.cnblogs.com/zjp-sha ...
- BZOJ 3944: Sum [杜教筛]
3944: Sum 贴模板 总结见学习笔记(现在还没写23333) #include <iostream> #include <cstdio> #include <cst ...
- LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻
P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...
随机推荐
- python基础一 day16 匿名函数
def add(x,y): return x+y add = lambda x,y:x+yprint(add(1,2)) dic={'k1':10,'k2':100,'k3':30}def func( ...
- Linux环境下使用xampp配置php开发环境
XAMPP (Apache+MySQL+PHP+PERL)是一个功能强大的建站集成软件包.这个软件包原来的名字是LAMPP,但是为 了避免误 解,最新的几个版本就改名为 XAMPP 了.它可以在Win ...
- C#赋值运算符
一.C#赋值运算符 C#语言的赋值运算符用于将一个数据赋予一个变量.属性或者引用.数据可以是常量.变量或者表达式. 1. 简单赋值 “=”操作符被称为简单赋值操作符.在一个简单赋值中,右操作数必须为某 ...
- 移动端调试利器-vConsole
现在移动端开发越来越火,随之而来的问题也越来越多,今天给大家介绍一款移动端调试神器,vconsole. 一.先引用文件,可以从https://www.bootcdn.cn/vConsole/下载,也可 ...
- kindeditor 上传图片失败问题总结
1.近段时间一直在处理kindeditor上传图片失败的问题,前期一直以为是前端的问题,利用谷歌控制台,打断点,修改方法,一直都找不到解决方案,直到查看服务器配置,才发现: WEB 1号服务器 /da ...
- 黑马基础阶段测试题:创建Phone(手机)类,Phone类中包含以下内容:
package com.swift; public class Phone { private String pinpai; private int dianliang; public String ...
- java算法面试题:有数组a[n],用java代码将数组元素顺序颠倒
package com.swift; import java.util.ArrayList; import java.util.Collections; import java.util.List; ...
- 【点分树】codechef Yet Another Tree Problem
已经连咕了好几天博客了:比较经典的题目 题目大意 给出一个 N 个点的树和$K_i$, 求每个点到其他所有点距离中第 $K_i$ 小的数值. 题目分析 做法一:点分树上$\log^3$ 首先暴力做法: ...
- Linux 系统性能:观察、测试、调优
一个完整运行的 Linux 系统包括很多子系统(介绍,CPU,Memory,IO,Network,…),监测和评估这些子系统是性能监测的一部分.我们往往需要宏观的看整个系统状态,也需要微观的看每个子系 ...
- bootmem_free_node
该函数设置: 1.pgdata节点的成员 2.pgdata->zone的成员 3.初始化zone->free_area 4.初始化zone所包含的所有页对应的页框描述符page结构体 /* ...