[bzoj3944] sum [杜教筛模板]
题面:
就是让你求$ \varphi\left(i\right) $以及$ \mu\left(i\right) $的前缀和
思路:
就是杜教筛的模板
我们把套路公式拿出来:
$ g\left(1\right)S\left(n\right)=\sum_{i=1}^{n}\left(g\ast f\right)\left(i\right)-\sum_{i=2}^{n}g\left(i\right)S\left(\frac ni\right) $
其中函数$f$分别为$\varphi$以及$\mu$
对于这两个函数有两个非常好用的卷积公式:
$\left(\mu\ast I\right)=\varepsilon$
$\left(\varphi\ast I\right)=id$
那么我们设g(x)=1,然后把g(x)带进去,两个前缀和就变成了这样的:
$S\left(n\right)=1-\sum_{i=2}^{n}S\left(\frac ni\right)$这个是$\mu$
$S\left(n\right)=\frac{n\ast\left(n+1\right)}{2}-\sum_{i=2}^{n}S\left(\frac ni\right)$这个是$\varphi$
然后递归,记忆化求和就可以了
注意最好写成一个递归处理两个答案......不然会T成狗
Code:
这里提供两个函数分开的版本,方便查看
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#define ll long long
using namespace std;
inline ll read(){
ll re=,flag=;char ch=getchar();
while(ch>''||ch<''){
if(ch=='-') flag=-;
ch=getchar();
}
while(ch>=''&&ch<='') re=(re<<)+(re<<)+ch-'',ch=getchar();
return re*flag;
}
ll phi[],pri[],tot=,mu[],n;bool vis[];
void init(){
ll i,j,k;phi[]=mu[]=;phi[]=;
for(i=;i<=;i++){
if(!vis[i]){
pri[++tot]=i;phi[i]=i-;mu[i]=-;
}
for(j=;j<=tot;j++){
k=i*pri[j];if(k>) break;
vis[k]=;
if(i%pri[j]==){
phi[k]=phi[i]*pri[j];
mu[k]=;
break;
}
phi[k]=phi[i]*phi[pri[j]];
mu[k]=-mu[i];
}
}
for(i=;i<=;i++) phi[i]=phi[i-]+phi[i],mu[i]=mu[i-]+mu[i];
}
ll sum1(ll x){return x*(x+)/;}
ll v1[],v2[],m1[],m2[];
ll S1(ll x){
if(x<=) return phi[x];
ll re=sum1(x);ll i,j,t=n/x;
if(v1[t]) return m1[t];
for(i=;i<=x;i=j+){
j=x/(x/i);
re-=(j-i+)*S1(x/i);
}
v1[t]=;
return m1[t]=re;
}
ll S2(ll x){
if(x<=) return mu[x];
ll re=,i,j,t=n/x;
if(v2[t]) return m2[t];
for(i=;i<=x;i=j+){
j=x/(x/i);
re-=(j-i+)*S2(x/i);
}
v2[t]=;
return m2[t]=re;
}
int main(){
ll T=read();init();
while(T--){
n=read();memset(v1,,sizeof(v1));memset(v2,,sizeof(v2));
printf("%lld %lld\n",S1(n),S2(n));
}
}
[bzoj3944] sum [杜教筛模板]的更多相关文章
- [BZOJ3944]Sum(杜教筛)
3944: Sum Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 6201 Solved: 1606[Submit][Status][Discuss ...
- 【Bzoj3944】杜教筛模板(狄利克雷卷积搞杜教筛)
题目链接 哇杜教筛超炫的 有没有见过$O(n^\frac{2}{3})$求欧拉函数前缀和的算法?没有吧?蛤蛤蛤 首先我们来看狄利克雷卷积是什么 首先我们把定义域是整数,陪域是复数的函数叫做数论函数. ...
- bzoj3944: Sum 杜教筛板子题
板子题(卡常) 也可能是用map太慢了 /************************************************************** Problem: 3944 Us ...
- BZOJ3944: Sum(杜教筛模板)
BZOJ3944: Sum(杜教筛模板) 题面描述 传送门 题目分析 求\(\sum_{i=1}^{n}\mu(i)\)和\(\sum_{i=1}^{n}\varphi(i)\) 数据范围线性不可做. ...
- 3944: Sum[杜教筛]
3944: Sum Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3471 Solved: 946[Submit][Status][Discuss] ...
- 洛谷P4213 Sum(杜教筛)
题目描述 给定一个正整数N(N\le2^{31}-1)N(N≤231−1) 求ans_1=\sum_{i=1}^n\phi(i),ans_2=\sum_{i=1}^n \mu(i)ans1=∑i=1 ...
- bzoj 3944 Sum —— 杜教筛
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3944 杜教筛入门题! 看博客:https://www.cnblogs.com/zjp-sha ...
- BZOJ 3944: Sum [杜教筛]
3944: Sum 贴模板 总结见学习笔记(现在还没写23333) #include <iostream> #include <cstdio> #include <cst ...
- LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻
P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...
随机推荐
- make 出错: /usr/bin/ld: cannot find -lrt
make 出错:/usr/bin/ld: cannot find -lrtcollect2: ld returned 1 exit statusmake: *** [page_parser] Erro ...
- 使用jquery实现获取除this(当前选定)以外的元素
今天做项目时,要求完成功能评价的分类,即好评,差评,中评.遇到一个问题,如何在选定一个评论类型时,该div颜色改变,其他评论类型的div颜色不变. 在使用$(this).attr()时,表示当前元素的 ...
- 搭建mock服务器(微信小程序)
搭建mock服务器(微信小程序) 如何在微信小程序使用mock.js实在是个问题,为了完全模拟访问路由和数据,选择在搭建本地mock服务器是一个不错的选择. 以下示例了一个mock服务器的搭建过程以及 ...
- swiper动画效果
参考swiper官方网站:http://www.swiper.com.cn/ Swiper常用于移动端网站的内容触摸滑动: 结构展示: 纯javascript打造的滑动特效插件,面向手机.平板电脑 ...
- 开发监测keepalived裂脑的脚本
检测思路:在备节点上执行脚本,如果可以ping通主节点并且备节点有VIP就报警,让人员介入检查是否裂脑. 在LB02备节点上开发脚本并执行: [root@lb02 ~]# cat /server/sc ...
- Django基于类的增删改查,简单逻辑都不用写
Django是Python中一个非常牛逼的web框架,他帮我们做了很多事,里边也提前封装了很多牛逼的功能,用起来简直不要太爽,在写网站的过程中,增删改查这几个基本的功能我们是经常会用到,Django把 ...
- 通过uboot传参设置mtd分区流程源码分析
因为公司同事反映他使用的开板无法将根目录下的ip_work目mounth成功,由于本人当时没有去现场查看问题,只是象征性的询问内核是否创建了/dev/mtdblock5设备节点,因为该开发板默认是挂载 ...
- STM32的四种输出模式(转载)
1.普通推挽输出(GPIO_Mode_Out_PP): 使用场合:一般用在0V和3.3V的场合.线路经过两个P_MOS 和N_MOS 管,负责上拉和下拉电流. 使用方法:直接使用 输出电平 ...
- 排列算法汇总(下一个排列,全排列,第K个排列)
一.下一个排列 首先,STL提供了两个用来计算排列组合关系的算法,分别是next_permutation和prev_permutation. next_permutation(nums.begin() ...
- CodeForces:#448 div2 a Pizza Separation
传送门:http://codeforces.com/contest/895/problem/A A. Pizza Separation time limit per test1 second memo ...