luoguP3769 [CH弱省胡策R2]TATT
luoguP3769 [CH弱省胡策R2]TATT
PS:做这题前先切掉 P4148简单题,对于本人这样的juruo更助于理解,当然dalao就当练练手吧
题目大意: 现在有n个四维空间中的点,请求出一条最长的路径,满足任意一维坐标都是单调不降的
偏模板的K-D Tree
题目没规定起点,则从任意一点出发,按维度优先级以及每个维度坐标为关键字排序,
每点作为终点查询一次,再插入,其他就是模板化的代码了
这里用到了一个小技巧,就是初始化将子树0的值赋值,避免过多的特判,使代码更加简洁
for(LL i=0;i<=3;++i)
tree[0].mi[i]=inf,tree[0].mx[i]=-inf; tree[0].maxn=-inf;
My complete code:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
typedef long long LL;
const LL maxn=1e5+10;
const LL inf=1e9;
inline LL read(){
LL x=0,f=1; char c=getchar();
while(c<'0'||c>'9'){
if(c=='-') f=-1; c=getchar();
}
while(c>='0'&&c<='9'){
x=x*10+c-'0'; c=getchar();
}
return x*f;
}
struct node{
LL son[2],d[4],maxn,size,val,mi[4],mx[4];
}tree[maxn],t2[maxn],tmp;
bool operator < (node g1,node g2){
for(LL i=0;i<=3;++i){
if(g1.d[i]<g2.d[i]) return 1;
if(g1.d[i]>g2.d[i]) return 0;
}return 0;
}
LL n,ans,ans_maxn,top,cnt,root,WD; LL sta[maxn];
inline void update(LL now){
LL son0=tree[now].son[0],son1=tree[now].son[1];
for(LL i=0;i<=3;++i){
tree[now].mi[i]=min(min(tree[son0].mi[i],tree[son1].mi[i]),tree[now].d[i]);
tree[now].mx[i]=max(max(tree[son0].mx[i],tree[son1].mx[i]),tree[now].d[i]);
}
tree[now].maxn=max(tree[now].val,max(tree[son0].maxn,tree[son1].maxn));
tree[now].size=tree[son0].size+tree[son1].size+1;
}
inline bool cmp(LL g1,LL g2){
return tree[g1].d[WD]<tree[g2].d[WD];
}
LL build(LL l,LL r,LL wd){
if(l>r)
return 0;
LL mid=(l+r)>>1;
WD=wd;
nth_element(sta+l,sta+mid,sta+r+1,cmp);
LL now=sta[mid];
tree[now].son[0]=build(l,mid-1,(wd+1)%4);
tree[now].son[1]=build(mid+1,r,(wd+1)%4);
update(now);
return now;
}
void pai(LL now){
if(!now)
return;
sta[++top]=now;
LL son0=tree[now].son[0],son1=tree[now].son[1];
pai(son0); pai(son1);
}
inline void check(LL &now,LL wd){
LL son0=tree[now].son[0],son1=tree[now].son[1];
if(tree[now].size*0.75<tree[son0].size||tree[now].size*0.75<tree[son1].size){
top=0;
pai(now);
now=build(1,tree[now].size,wd);
}
}
void insert(LL &now,LL wd){
if(!now){
now=++cnt;
tree[now]=tmp;
for(LL i=0;i<=3;++i)
tree[now].mi[i]=tree[now].mx[i]=tree[now].d[i];
tree[now].maxn=tree[now].val; tree[now].size=1;
return;
}
if(tmp.d[wd]<tree[now].d[wd])
insert(tree[now].son[0],(wd+1)%4);
else
insert(tree[now].son[1],(wd+1)%4);
update(now);
check(now,wd);
} inline LL dis(node g1,node g2){
for(LL i=0;i<=3;++i)
if(g1.d[i]>g2.d[i])
return 0;
return g1.val;
}
inline LL into(LL now){
if(!now)
return 0;
LL sum=0;
for(LL i=0;i<=3;++i)
if(tree[now].mx[i]<=tmp.d[i])
++sum;
if(sum==4)
return 4;
for(LL i=0;i<=3;++i)
if(tree[now].mi[i]>tmp.d[i])
return 0;
return 1;
}
void query(LL now){
ans=max(dis(tree[now],tmp),ans);
LL son0=tree[now].son[0],son1=tree[now].son[1];
LL dl=into(son0),dr=into(son1);
if(dl==4)
ans=max(tree[son0].maxn,ans);
else if(dl&&ans<tree[son0].maxn)
query(son0);
if(dr==4)
ans=max(tree[son1].maxn,ans);
else if(dr&&ans<tree[son1].maxn)
query(son1);
}
int main(){
n=read();
for(LL i=1;i<=n;++i){
for(LL j=0;j<=3;++j)
t2[i].d[j]=read();
t2[i].val=1;
}
sort(t2+1,t2+n+1);
for(LL i=0;i<=3;++i)
tree[0].mi[i]=inf,tree[0].mx[i]=-inf; tree[0].maxn=-inf;
for(LL i=1;i<=n;++i){
ans=0;
tmp=t2[i];
query(root);
tmp.val+=ans;
ans_maxn=max(tmp.val,ans_maxn);
insert(root,0);
}
printf("%lld",ans_maxn);
return 0;
}
luoguP3769 [CH弱省胡策R2]TATT的更多相关文章
- [CH弱省胡策R2]TATT
description 洛谷 data range \[ n\le 5\times 10^4\] solution 这就是四维偏序了... 好象时间复杂度是\(O(n^{\frac{5}{3}})\) ...
- [Luogu3769][CH弱省胡策R2]TATT
luogu 题意 其实就是四维偏序. sol 第一维排序,然后就只需要写个\(3D-tree\)了. 据说\(kD-tree\)的单次查询复杂度是\(O(n^{1-\frac{1}{k}})\).所以 ...
- 【题解】[CH弱省胡策R2]TATT
本蒟蒻第一道\(K-D-Tree\)维护\(dp\) Question 题目大意:求一条路径,使得其四个维度单调不降. 先排序消掉一维再说. 对于每一个点,初始的时候绝对长度是1啊.于是,先赋值一个1 ...
- 洛谷3769[CH弱省胡策R2]TATT (KDTree)(四维LIS)
真是一个自闭的题目(调了一个上午+大半个下午) 从\(WA\)到\(WA+TLE\)到\(TLE\)到\(AC\) 真的艰辛. 首先,这个题,我们可以考虑直接上四维KDTree来解决. 对于kdtre ...
- 【弱省胡策】Round #5 Count
[弱省胡策]Round #5 Count 太神仙了. \(DP\)做法 设\(f_{n,m,d,k}\)表示\(n*m\)的矩阵,填入第\(k\)个颜色,并且第\(k\)个颜色最少的一列上有\(d\) ...
- 弱省胡策 Magic
弱省胡策 Magic 求\(n\)个点\(n\)的条边的简单联通图的个数. 毒瘤,还要写高精. 我们枚举环的大小\(k\),\(\displaystyle ans=\sum_{k=3}^nC_n^k ...
- 【ContestHunter】【弱省胡策】【Round0】(A)&【Round1】(B)
DP+容斥原理or补集转化?/KD-Tree 唔……突然发现最早打的两场(打的最烂的两场)没有写记录……(太烂所以不忍记录了吗... 还是把搞出来了的两道题记录一下吧= =勉强算弥补一下缺憾…… Ro ...
- 【ContestHunter】【弱省胡策】【Round3】(C)
容斥原理+Fib Orz HE的神犇们 蒟蒻只能改出来第三题……实在太弱 官方题解:http://pan.baidu.com/s/1o6MdtQq fib的神奇性质……还有解密a[i]的过程……这里就 ...
- 【ContestHunter】【弱省胡策】【Round2】
官方题解:http://wyfcyx.is-programmer.com/posts/95490.html A 目前只会30分的暴力……DP好像很神的样子0.0(听说可以多次随机强行算? //Roun ...
随机推荐
- java编程思想第四版第9章
练习3: public class MainTest { public static void main(String args[]){ Bcycle b=new Bcycle(); b.print( ...
- C#控件之ListView
1.添加一行 listView1.Items.Add(new ListViewItem(new string[] {str1, str2, str3 })); 2.鼠标悬停在listview某项时弹出 ...
- maven module和project的区别
Maven Project可以理解为父工程.Maven Module可以理解为子工程.创建Maven Module工程必须有存在的父工程,maven就是通过父子工程进行工程管理的.
- Android Studio中利用JavaDoc生成项目API文档
1. 在Android Studio中的菜单项中点击Generate JavaDoc
- 每天一个命令 ls
默认建立一个目录时初始硬连接数为2若该目录下有几个目录就会再增加几个连接数 ls -li 查看inode信息 ls -al 查看所有文件信息 ls -lR 查看目录下目录下的文件(递归显示目录下的文件 ...
- 【Python】导入类
导入单个类 随着不断添加类,可能会使文件变得很长,那么此时,需要将类存储在模块中,然后在主程序导入类即可 book.py class Book(): '''模拟一本书''' def __init__( ...
- MySQL -进阶
一.视图 视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据集,并为其命名],用户使用时只需使用[名称]即可获取结果集,并可以将其当作表来使用 SELECT * FROM(SELE ...
- 11-BeautifulSoup库详解
---恢复内容开始--- 灵活又方便的网页解析库,处理高效,支持多种解析器. 利用它不用编写正则表达式即可方便地实现网页信息的提取. 这个库有四个主要方法吧,其中xlml是最常用的,他的标签选择器可以 ...
- VTK学习之路——画画我的小苹果
数据集主要由描写叙述数据集几何形状的点集数据及构成数据集的单元构成,因此构建数据集的主要任务就是确定点集和构建单元,本演示样例程序构建了一个苹果的实体,然后绘制苹果.演示样例程序运行的过程例如以下: ...
- [Android Studio 权威教程]最有用的快捷键
上篇中我们讲了Android Studio怎样加入插件.这篇我们讲讲AS的快捷键.这里我说明的快捷键都是最最有用的,希望刚刚加入AS的朋友尽快的熟悉一下这几个快捷键,这样能够帮助你提高coding的效 ...