https://arxiv.org/abs/1512.00567

Convolutional networks are at the core of most state-of-the-art computer vision solutions for a wide variety of tasks. Since 2014 very deep convolutional networks started to become mainstream, yielding substantial gains in various benchmarks. Although increased model size and computational cost tend to translate to immediate quality gains for most tasks (as long as enough labeled data is provided for training), computational efficiency and low parameter count are still enabling factors for various use cases such as mobile vision and big-data scenarios. Here we explore ways to scale up networks in ways that aim at utilizing the added computation as efficiently as possible by suitably factorized convolutions and aggressive regularization. We benchmark our methods on the ILSVRC 2012 classification challenge validation set demonstrate substantial gains over the state of the art: 21.2% top-1 and 5.6% top-5 error for single frame evaluation using a network with a computational cost of 5 billion multiply-adds per inference and with using less than 25 million parameters. With an ensemble of 4 models and multi-crop evaluation, we report 3.5% top-5 error on the validation set (3.6% error on the test set) and 17.3% top-1 error on the validation set.

Rethinking the Inception Architecture for Computer Vision的更多相关文章

  1. inception_v2版本《Rethinking the Inception Architecture for Computer Vision》(转载)

    转载链接:https://www.jianshu.com/p/4e5b3e652639 Szegedy在2015年发表了论文Rethinking the Inception Architecture ...

  2. Rethinking the inception architecture for computer vision的 paper 相关知识

    这一篇论文很不错,也很有价值;它重新思考了googLeNet的网络结构--Inception architecture,在此基础上提出了新的改进方法; 文章的一个主导目的就是:充分有效地利用compu ...

  3. 图像分类(三)GoogLenet Inception_v3:Rethinking the Inception Architecture for Computer Vision

    Inception V3网络(注意,不是module了,而是network,包含多种Inception modules)主要是在V2基础上进行的改进,特点如下: 将滤波器尺寸(Filter Size) ...

  4. 【Network architecture】Rethinking the Inception Architecture for Computer Vision(inception-v3)论文解析

    目录 0. paper link 1. Overview 2. Four General Design Principles 3. Factorizing Convolutions with Larg ...

  5. 论文笔记——Rethinking the Inception Architecture for Computer Vision

    1. 论文思想 factorized convolutions and aggressive regularization. 本文给出了一些网络设计的技巧. 2. 结果 用5G的计算量和25M的参数. ...

  6. (转) WTF is computer vision?

        WTF is computer vision? Posted Nov 13, 2016 by Devin Coldewey, Contributor   Next Story   Someon ...

  7. Analyzing The Papers Behind Facebook's Computer Vision Approach

    Analyzing The Papers Behind Facebook's Computer Vision Approach Introduction You know that company c ...

  8. 计算机视觉和人工智能的状态:我们已经走得很远了 The state of Computer Vision and AI: we are really, really far away.

    The picture above is funny. But for me it is also one of those examples that make me sad about the o ...

  9. Computer Vision Tutorials from Conferences (3) -- CVPR

    CVPR 2013 (http://www.pamitc.org/cvpr13/tutorials.php) Foundations of Spatial SpectroscopyJames Cogg ...

随机推荐

  1. luogu 1327 数列排序 & 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 J题 循环节

    luogu 1327 数列排序 题意 给定一个数列\(\{an\}\),这个数列满足\(ai≠aj(i≠j)\),现在要求你把这个数列从小到大排序,每次允许你交换其中任意一对数,请问最少需要几次交换? ...

  2. PHP文件函数

    PHP文件函数 函数 描述 PHPbasename() 返回路径中的文件名部分. 3chgrp() 改变文件组. 3chmod() 改变文件模式. 3chown() 改变文件所有者. 3clearst ...

  3. java三种匿名的方式开启线程

    package demo04; /* * 使用匿名内部类,实现多线程程序 * 前提:继承或者接口实现 * new 父类或者接口(){ * 重写 抽象方法 * } */ public class Thr ...

  4. js -“=”“==”和“===”的区别

    这个问题再面试中经常被问到,说实话我都是懵的,一个“=”和两个“==”等的区别我还是知道的,就是三个“===”我完全是不知道的,因为我基本上都没有遇到过且用到过,所以再这个问题上我是没分的,人家考官就 ...

  5. babel转码神器babel-preset-env

    简介 现如今不同的浏览器和平台chrome, opera, edge, firefox, safari, ie, ios, android, node, electron 不同的模块 "am ...

  6. 海量端口扫描工具masscan

    海量端口扫描工具masscan   masscan号称是互联网上最快的端口扫描工具,可以6分钟扫描整个互联网,每秒可以发送一百万个数据包.为了提高处理速度,masscan定制了TCP/IP栈,从而不影 ...

  7. 在eclipse使用map reduce编写word count程序生成jar包并在虚拟机运行的步骤

    ---恢复内容开始--- 1.首先准备一个需要统计的单词文件 word.txt,我们的单词是以空格分开的,统计时按照空格分隔即可 hello hadoop hello yarnhello zookee ...

  8. 手动安装windows的磁盘清理工具

    All you really need to do is copy some files that are already located on your server into specific s ...

  9. Android减少布局层次--有关Activity根视图DecorView的思考

    1 Android应用图层 一直觉得有关DecorView还是有些问题没有搞清楚,今天在看了一点有关SurfaceFlinger的内容以后,顿时突发奇想,想到之前的问题,之前的思考是: 虽然可以将De ...

  10. win7 32位配置apache+wsgi+django环境

    1下载xampp,里面有apache,mysql,phpmyadmin, 2 下载wsgi,http://download.csdn.net/download/copter/9192361 将对应的模 ...