https://arxiv.org/abs/1512.00567

Convolutional networks are at the core of most state-of-the-art computer vision solutions for a wide variety of tasks. Since 2014 very deep convolutional networks started to become mainstream, yielding substantial gains in various benchmarks. Although increased model size and computational cost tend to translate to immediate quality gains for most tasks (as long as enough labeled data is provided for training), computational efficiency and low parameter count are still enabling factors for various use cases such as mobile vision and big-data scenarios. Here we explore ways to scale up networks in ways that aim at utilizing the added computation as efficiently as possible by suitably factorized convolutions and aggressive regularization. We benchmark our methods on the ILSVRC 2012 classification challenge validation set demonstrate substantial gains over the state of the art: 21.2% top-1 and 5.6% top-5 error for single frame evaluation using a network with a computational cost of 5 billion multiply-adds per inference and with using less than 25 million parameters. With an ensemble of 4 models and multi-crop evaluation, we report 3.5% top-5 error on the validation set (3.6% error on the test set) and 17.3% top-1 error on the validation set.

Rethinking the Inception Architecture for Computer Vision的更多相关文章

  1. inception_v2版本《Rethinking the Inception Architecture for Computer Vision》(转载)

    转载链接:https://www.jianshu.com/p/4e5b3e652639 Szegedy在2015年发表了论文Rethinking the Inception Architecture ...

  2. Rethinking the inception architecture for computer vision的 paper 相关知识

    这一篇论文很不错,也很有价值;它重新思考了googLeNet的网络结构--Inception architecture,在此基础上提出了新的改进方法; 文章的一个主导目的就是:充分有效地利用compu ...

  3. 图像分类(三)GoogLenet Inception_v3:Rethinking the Inception Architecture for Computer Vision

    Inception V3网络(注意,不是module了,而是network,包含多种Inception modules)主要是在V2基础上进行的改进,特点如下: 将滤波器尺寸(Filter Size) ...

  4. 【Network architecture】Rethinking the Inception Architecture for Computer Vision(inception-v3)论文解析

    目录 0. paper link 1. Overview 2. Four General Design Principles 3. Factorizing Convolutions with Larg ...

  5. 论文笔记——Rethinking the Inception Architecture for Computer Vision

    1. 论文思想 factorized convolutions and aggressive regularization. 本文给出了一些网络设计的技巧. 2. 结果 用5G的计算量和25M的参数. ...

  6. (转) WTF is computer vision?

        WTF is computer vision? Posted Nov 13, 2016 by Devin Coldewey, Contributor   Next Story   Someon ...

  7. Analyzing The Papers Behind Facebook's Computer Vision Approach

    Analyzing The Papers Behind Facebook's Computer Vision Approach Introduction You know that company c ...

  8. 计算机视觉和人工智能的状态:我们已经走得很远了 The state of Computer Vision and AI: we are really, really far away.

    The picture above is funny. But for me it is also one of those examples that make me sad about the o ...

  9. Computer Vision Tutorials from Conferences (3) -- CVPR

    CVPR 2013 (http://www.pamitc.org/cvpr13/tutorials.php) Foundations of Spatial SpectroscopyJames Cogg ...

随机推荐

  1. 16深入理解C指针之---迷途指针

    一.若程序中存在迷途指针,轻则导致程序退出,重则使程序出现重大逻辑错误 1.定义:内存已释放,指针依旧指向原始内存,这种指针就是迷途指针 2.迷途指针和指针别名: 1).指针依旧指向已释放的内存,无法 ...

  2. [leetcode]84.Largest Rectangle in Histogram ,O(n)解法剖析

    Given n non-negative integers representing the histogram's bar height where the width of each bar is ...

  3. svn不是内部或外部命令?

    svn不是内部或外部命令? 我的系统是Win7, [计算机]-->右键[属性]-->[高级系统设置]-->[环境变量]-->[系统变量 (S)]-->[Path]--&g ...

  4. PythonWeb开发教程(二),搭建第一个django项目

    这篇写怎么创建django项目,以及把django项目运行起来. 1.创建django项目 a.使用命令创建,安装完django之后就有django-admin命令了,执行命令创建即可,命令如下:   ...

  5. eclipse默认配色(内含恢复文件和恢复方法)

    转载:http://blog.csdn.net/w174504744/article/details/8672679 很多搞开发的同学一开始不喜欢默认的eclipse白底配色,去网上千辛万苦搜到了很多 ...

  6. uibutton 使用settitle后如何修改其中文字对齐方式

    UIButton *btn = [UIButton buttonWithType:UIButtonTypeCustom];            btn.frame = CGRectMake(5, s ...

  7. 11gR2 RAC 独占模式replace votedisk遭遇PROC-26,restore ocr遭遇CRS-4000、PROT-35

    原文链接:http://blog.itpub.net/23135684/viewspace-748816/ 11gR2 RAC系统的存储数据全然丢失,全部节点的软件都安装在本地磁盘中.本地磁盘保留了O ...

  8. 快讯 | FireEye在GitHub上开源密码破解工具GoCrack

    近日,FireEye 开源了一款密码破解工具 GoCrack,可在多机器上部署破解任务. GoCrack 是由 FireEye’s Innovation and Custom Engineering ...

  9. java线程中Exchanger使用

    有时我们须要对元素进行配对和交换线程的同步点,使用exchange方法 返回其伙伴的对象,这时我们就须要使用线程类中的Exchanger类了, 我通过一个实例 来简单说明一下他的用法及其作用: imp ...

  10. iOS加急审核之2015年总结

    就在今天到公司的一会,查看了一下邮件,收到Apple的回复,今年的第六次加急审核通过了. 然后,想想明天就是西方的圣诞节假期了,从22日到29日的这段时间,Apple会暂时关闭iTunesconnec ...