题解就看这位仁兄的吧…不过代码还是别看他的了…

同样的方法…我200ms,他2000ms.

常数的幽怨…

CODE

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 505;
const double eps = 1e-8;
struct Point {
double x, y;
Point(){}
Point(double x, double y):x(x), y(y){}
inline Point operator -(const Point &o)const { return Point(x-o.x, y-o.y); }
inline double operator *(const Point &o)const { return x*o.y - y*o.x; }
}a[MAXN], b[MAXN];
struct Line {
Point p, v;
Line(){}
Line(const Point &p, const Point &v):p(p), v(v){}
};
inline bool On_Right(const Line &l, const Point &p) {
return (p - l.p) * l.v > eps;
}
inline int dcmp(const double &x) {
return x < -eps ? -1 : x < eps ? 0 : 1;
}
int m, n, f[MAXN][MAXN];
int main () {
scanf("%d%d", &m, &n); double o;
for(int i = 1; i <= m; ++i) scanf("%lf%lf%lf", &a[i].x, &a[i].y, &o);
for(int i = 1; i <= n; ++i) scanf("%lf%lf%lf", &b[i].x, &b[i].y, &o);
for(int i = 1; i <= m; ++i) {
for(int j = 1; j <= m; ++j)
f[i][j] = m+1;
bool flg = 1;
for(int j = 1; j <= n && flg; ++j)
if(dcmp(b[j].x-a[i].x) || dcmp(b[j].y-a[i].y)) flg = 0;
if(flg) return puts("1"), 0;
}
for(int i = 1; i <= m; ++i)
for(int j = 1; j <= m; ++j)
if(i != j && !(a[i].x == a[j].x && a[i].y == a[j].y)) { //i->j
Line tmp = Line(a[i], a[j] - a[i]);
bool flg = 1;
for(int k = 1; k <= n && flg; ++k)
if(On_Right(tmp, b[k])) flg = 0;
if(flg) {
for(int k = 1; k <= n && flg; ++k)
if
(
(!dcmp((b[k] - tmp.p) * tmp.v))
&&
((b[k].x < a[i].x && b[k].x < a[j].x)
|| (b[k].x > a[i].x && b[k].x > a[j].x)
|| (b[k].y < a[i].y && b[k].y < a[j].y)
|| (b[k].y > a[i].y && b[k].y > a[j].y)
)
) flg = 0;
if(flg) f[i][j] = 1;
}
}
for(int k = 1; k <= m; ++k)
for(int i = 1; i <= m; ++i) if(f[i][k] <= m)
for(int j = 1; j <= m; ++j) if(f[k][j]+f[i][k] <= m)
f[i][j] = min(f[i][j], f[i][k] + f[k][j]);
int ans = m+1;
for(int i = 1; i <= m; ans = min(ans, f[i][i]), ++i);
printf("%d\n", ans > m ? -1 : ans);
}

BZOJ 1027: [JSOI2007]合金 (计算几何+Floyd求最小环)的更多相关文章

  1. BZOJ 1027 JSOI2007 合金 计算几何+Floyd

    题目大意:给定一些合金,选择最少的合金,使这些合金能够按比例合成要求的合金 首先这题的想法特别奇异 看这题干怎么会想到计算几何 并且计算几何又怎么会跟Floyd挂边 好强大 首先因为a+b+c=1 所 ...

  2. 【BZOJ 1027】 (凸包+floyd求最小环)

    [题意] 某公司加工一种由铁.铝.锡组成的合金.他们的工作很简单.首先进口一些铁铝锡合金原材料,不同种类的原材料中铁铝锡的比重不同.然后,将每种原材料取出一定量,经过融解.混合,得到新的合金.新的合金 ...

  3. BZOJ 1027 [JSOI2007]合金 ——计算几何

    我们可以把每一种金属拆成一个二维向量,显然第三维可以计算出来,是无关的. 我们只需要考虑前两维的情况,显然可以构成点集所形成的凸包内. 然后我们枚举两两的情况,然后可以发现如果所有的点都在一侧是可以选 ...

  4. bzoj 1027 [JSOI2007]合金(计算几何+floyd最小环)

    1027: [JSOI2007]合金 Time Limit: 4 Sec  Memory Limit: 162 MBSubmit: 2970  Solved: 787[Submit][Status][ ...

  5. BZOJ_1027_[JSOI2007]_合金_(计算几何+Floyd求最小环)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1027 共三种金属,\(m\)种材料,给出每种材料中三种金属的占比. 给出\(n\)种合金的三种 ...

  6. bzoj 1027: [JSOI2007]合金【凸包+Floyd】

    参考:https://www.cnblogs.com/zhuohan123/p/3237246.html 因为一c可以由1-a-b得出,所以删掉c,把a,b抽象成二维平面上的点.首先考虑一个客户需求能 ...

  7. BZOJ 1027 [JSOI2007]合金

    1027: [JSOI2007]合金 Time Limit: 4 Sec  Memory Limit: 162 MBSubmit: 2605  Solved: 692[Submit][Status][ ...

  8. [bzoj 1027][JSOI2007]合金(解析几何+最小环)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1027 分析: 首先因为一个合金的和为1,所以考虑2个材料合金能否合成一个需求合金的时候 ...

  9. 1027: [JSOI2007]合金 - BZOJ

    Description 某公司加工一种由铁.铝.锡组成的合金.他们的工作很简单.首先进口一些铁铝锡合金原材料,不同种类的原材料中铁铝锡的比重不同.然后,将每种原材料取出一定量,经过融解.混合,得到新的 ...

随机推荐

  1. 《C专家编程》读书笔记之第8~11章

    八.为什么程序员无法分清万圣节和圣诞节 1. 整形提升是指char,short int和位段类型(无论signed或unsigned)以及枚举类型将被提升为int或unsigned int(如果int ...

  2. ThreadLocal父子线程之间的数据传递问题

    一.问题的提出 在系统开发过程中常使用ThreadLocal进行传递日志的RequestId,由此来获取整条请求链路.然而当线程中开启了其他的线程,此时ThreadLocal里面的数据将会出现无法获取 ...

  3. MySQL中的InnoDB中产生的死锁深究

    查考地址:https://blog.csdn.net/loophome/article/details/79867174 待研究中.....

  4. Centos7下,宿主机nginx配合docker环境的php-fpm

    一.安装docker并启动 yum install docker systemctl start docker 二.安装nginxCentOS 7默认不能从yum中安装nginx,原因可以自己搜索一下 ...

  5. ios 输入框失去焦点,位置回调方法

    微信网页开发,ios 在input,textarea 失去焦点后,页面无法回调. 以下方法可解决: $("input,textarea").on("blur", ...

  6. MySQL的安装 --windows版本

    下载 第一步:打开网址,https://www.mysql.com/ ,点击downloads之后跳转到 https://www.mysql.com/downloads/ 第二步 :跳转至网址 htt ...

  7. kubernetes 水平伸缩及yaml格式编写

    Replication Controller:用来部署.升级PodReplica Set:下一代的Replication ControllerDeployment:可以更加方便的管理Pod和Repli ...

  8. String的equals和hashCode方法

    对于判断对象是否相等,肯定需要重写它的equals和hashCode方法.不然使用默认的方法只会比较地址,因此会出现错误. 以String类为例,且看它的equals方法 public boolean ...

  9. 怎样查看或修改网页的标题title

    网页的标题一般指的是 <title>标签之间的文本节点值, 它会显示在浏览器的标签页上, 我们可以通过 document.title 来查看或修改它: document.title; // ...

  10. 第一讲,DOS头文件格式

    今天讲解PE文件格式的DOS头文件格式 首先我们要理解,什么是文件格式,我们常说的EXE可执行程序,就是一个文件格式,那么我们要了解它里面到底存了什么内容 简短的说明. 我们要知道,PE文件格式,是微 ...