打个表发现我们要求的就是卡特兰数的第 n 项,即 $\frac{C_{2n}^{n}}{n+1}$.

对组合数的阶乘展开,然后暴力分解质因子并开桶统计一下即可.

code:

#include <bits/stdc++.h>
#define N 100040
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int nex[N],vis[27];
char str[N];
int main()
{
// setIO("input");
int n,i,j;
scanf("%d",&n);
nex[0]=-1;
for(i=1;i<=n;++i)
{
scanf("%d",&nex[i]), nex[i]=i-nex[i];
if(nex[i]) str[i]=str[nex[i]];
else
{
for(j=nex[i-1];~j;j=nex[j]) vis[str[j+1]-'a']=i;
for(j=0;j<26;++j) if(vis[j]!=i) break;
str[i]=j+'a';
}
}
printf("%s\n",str+1);
return 0;
}

  

luogu 3200 [HNOI2009]有趣的数列 卡特兰数+质因数分解的更多相关文章

  1. BZOJ1485: [HNOI2009]有趣的数列(Catalan数,质因数分解求组合数)

    题意 挺简洁的. 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…<a ...

  2. [HNOI2009]有趣的数列 卡特兰数

    题面:[HNOI2009]有趣的数列 题解: 观察到题目其实就是要求从长为2n的序列中选n个放在集合a,剩下的放在集合b,使得集合a和集合b中可以一一对应的使a中的元素小于b. 2种想法(实质上是一样 ...

  3. BZOJ1485:[HNOI2009]有趣的数列(卡特兰数)

    Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...

  4. [HNOI2009] 有趣的数列——卡特兰数与杨表

    [HNOI 2009] 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...

  5. bzoj 1485 [HNOI2009]有趣的数列 卡特兰数

    把排好序的序列看成一对对括号,要把他们往原数列里塞,所以就是括号序合法方案数 即为卡特兰数 f(n)=Cn2nn+1 求的时候为避免除法,可以O(n)计算每个素数出现次数,最后乘起来,打完之后发现其实 ...

  6. 【BZOJ 1485】[HNOI2009]有趣的数列 卡特兰数

    这个题我是冲着卡特兰数来的所以就没有想到什么dp,当然也没有想到用卡特兰数的原因........... 你只要求出前几项就会发现是个卡特兰数,为什么呢:我们选择地时候要选择奇数位和偶数位,相邻(一对里 ...

  7. BZOJ1485: [HNOI2009]有趣的数列(卡特兰数+快速幂)

    题目链接 传送门 题面 思路 打表可以发现前六项分别为1,2,5,12,42,132,加上\(n=0\)时的1构成了卡特兰数的前几项. 看别人的题解说把每一个数扫一遍,奇数项当成入栈,偶数项当成出栈, ...

  8. BZOJ 1485: [HNOI2009]有趣的数列( catalan数 )

    打个表找一下规律可以发现...就是卡特兰数...卡特兰数可以用组合数计算.对于这道题,ans(n) = C(n, 2n) / (n+1) , 分解质因数去算就可以了... -------------- ...

  9. BZOJ 1485: [HNOI2009]有趣的数列 [Catalan数 质因子分解]

    1485: [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所 ...

随机推荐

  1. 小程序--e.target和e.currentTarget区别

    事件捕获与事件冒泡 事件捕获是从外到内,事件冒泡是从内到外. 注意:不管是不是冒泡事件,都不会改变事件传递的参数值,都还是在dataset中获取(******) target:指事件源组件对象    ...

  2. TCP,SYN,FIN扫描

    1.TCP扫描相对来说是速度比较慢的一种,为什么会慢呢?因为这种方法在扫描的时候会从本地主机的一个端口向目标主机的一个端口发出一个连接请求报文段,而目标主机在收到这个这个请求报文后: 有回复: 若同意 ...

  3. 【flume】5.采集日志进入hbase

    设置我们的flume配置信息 # Licensed to the Apache Software Foundation (ASF) under one # or more contributor li ...

  4. rabbitMQ 重试

    rabbitMQ 重试机制 spring.rabbitmq.listener.simple.retry.max-attempts=5 最大重试次数spring.rabbitmq.listener.si ...

  5. javascript之防抖与节流

    防抖 你是否在日常开发中遇到一个问题,在滚动事件中需要做个复杂计算或者实现一个按钮的防二次点击操作. 这些需求都可以通过函数防抖动来实现.尤其是第一个需求,如果在频繁的事件回调中做复杂计算,很有可能导 ...

  6. vijo 1456最小总代价

    题意:中文题... 题解:状态比较多,可以说是状压的基础题吧,我们定义dp[i][j],j为一个二进制数,每位0表示接触过该物品,1表示没有接触过;j表示当前物品在谁手上.递推的顺序注意一下就好 ac ...

  7. 2..net core 和.net framework 版本

    同一台机器上可以安装多个版本的.net core runtime.比如: 每个.net core项目都可以指定自己所用的版本,所以改变某个项目的target version不会影响到其他的.安装新的r ...

  8. WebApi 身份认 Basic基础认证

    <body> <div style="text-align:center;"> <div>用户名:<input type="te ...

  9. 0-1背包问题——回溯法求解【Python】

    回溯法求解0-1背包问题: 问题:背包大小 w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放入背包中物品的总价值最大. 回溯法核心:能进则进,进不了则换,换不了则退.(按照 ...

  10. pc端vue 滚动到底部翻页

    html: <div class="list" ref="scrollTopList"> <div class="listsmall ...