bgm(雾)

luogu

首先是那个区间的价值比较奇怪,如果推导后可以发现只有左右端点元素都是同一种\(s_x\)的区间才有可能贡献答案,并且价值为\(s_x(cnt(x)_r-cnt(x)_{l-1})^2\),这是因为如果选出来的这种元素的端点的左右两边还有其他元素,那么显然的把那些其他的元素另外划分在别的区间里可以获得更优的答案

然后现在就可以\(O(n^2)\)了,转移大概为\(f_i=\min_{j<i,s_j=s_i} f_{j-1}+s_i(cnt(s_i)_i-cnt(s_i)_{j-1})^2\).考虑固定\(j\),随着\(i\)的右移,\(j\)位置的贡献是要比一个\(>j\)的\(k\)位置的贡献减少速度更快的,如果在某个位置\(j\)比\(k\)更优,那么以后\(k\)都不会更优了.所以考虑用单调栈维护这些决策点,在转移的时候如果栈顶下面的元素比栈顶元素更优了就弹栈顶,这个判断一个元素比另一个更优的时刻可以看做是维护凸壳,然后求一下直线交点.转移时用栈顶转移,接着把这个位置的dp值插入单调栈

不过这样做可能会出现栈顶下面两个元素比栈顶元素更优的时刻 要比 栈顶下面一个元素比栈顶元素更优的时刻 要早的情况,可以发现这种情况下栈顶下面一个元素就一定不优了,所以在插入元素的时候弹掉不优的就好了

#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define db double using namespace std;
const int N=1e5+10,M=1e4+10;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
struct line
{
db k,b;
}li[N];
db crs(line aa,line bb){return (bb.b-aa.b)/(aa.k-bb.k);}
int n,a[N],nt[N],bk[M],s[N];
LL f[N];
vector<int> stk[M];
vector<int>::iterator it; int main()
{
n=rd();
for(int i=1;i<=n;++i) a[i]=rd();
li[0].k=li[0].b=0;
stk[a[1]].push_back(0);
for(int i=1;i<=n;++i)
nt[i]=bk[a[i]],s[i]=s[nt[i]]+1,bk[a[i]]=i;
for(int i=1;i<=n;++i)
{
int x=a[i],nn=stk[x].size();
while(nn>1&&crs(li[stk[x][nn-1]],li[stk[x][nn-2]])<=(db)s[i]) --nn,stk[x].pop_back();
it=--stk[a[i]].end();
f[i]=(LL)li[*it].k*s[i]+(LL)li[*it].b+1ll*a[i]*s[i]*s[i];
li[i].k=-2ll*a[i+1]*s[nt[i+1]],li[i].b=f[i]+1ll*a[i+1]*s[nt[i+1]]*s[nt[i+1]];
x=a[i+1],nn=stk[x].size();
while(nn>1&&crs(li[stk[x][nn-2]],li[i])<=crs(li[stk[x][nn-1]],li[i])) --nn,stk[x].pop_back();
stk[x].push_back(i);
}
printf("%lld\n",f[n]);
return 0;
}

luogu P5504 [JSOI2011]柠檬的更多相关文章

  1. P5504 [JSOI2011]柠檬

    传送门 显然考虑 $dp$ ,发现从右往左和从左往右是一样的,所以只考虑一边就行 发现对于切的左右端点,选择的 $s0$ 一定要为左右端点的贝壳大小,不然这个端点不产生贡献还不如分开来单个贡献 所以设 ...

  2. bzoj4709: [Jsoi2011]柠檬 斜率优化

    题目链接 bzoj4709: [Jsoi2011]柠檬 题解 斜率优化 设 \(f[i]\) 表示前 \(i\)个数分成若干段的最大总价值. 对于分成的每一段,左端点的数.右端点的数.选择的数一定是相 ...

  3. 4709: [Jsoi2011]柠檬

    4709: [Jsoi2011]柠檬 https://www.lydsy.com/JudgeOnline/problem.php?id=4709 分析: 决策单调性+栈+二分. 首先挖掘性质:每个段选 ...

  4. 【BZOJ】4709: [Jsoi2011]柠檬

    4709: [Jsoi2011]柠檬 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 779  Solved: 310[Submit][Status][ ...

  5. 【BZOJ4709】[Jsoi2011]柠檬 斜率优化+单调栈

    [BZOJ4709][Jsoi2011]柠檬 Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,0 ...

  6. 【LG5504】[JSOI2011]柠檬

    [LG5504][JSOI2011]柠檬 题面 洛谷 题解 考虑\(dp\),令\(f_i\)表示\(dp\)到第\(i\)位且在第\(i\)位分段的最大值. 我们令题面中的\(s_i\)为\(a_i ...

  7. 笔记-[JSOI2011]柠檬

    笔记-[JSOI2011]柠檬 [JSOI2011]柠檬 \(f_i\) 表示到第 \(i\) 只贝壳最多可以换得的柠檬数. 令 \(c_i=\sum_{h=1}^i[s_h=s_i]\). \[\b ...

  8. bzoj4709 [jsoi2011]柠檬

    Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N  ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们 ...

  9. 【bzoj4709】[Jsoi2011]柠檬 斜率优化

    题目描述 给你一个长度为 $n$ 的序列,将其分成若干段,每段选择一个数,获得 $这个数\times 它在这段出现次数的平方$ 的价值.求最大总价值. $n\le 10^5$ . 输入 第 1 行:一 ...

随机推荐

  1. vmalloc详解

    vmalloc是一个接口函数, 内核代码使用它来分配在虚拟内存中连续但在物理内存中不一定连续的内存. 只需要一个参数,以字节为单位. 使用vmalloc的最著名的实例是内核对模块的实现. 因为模块可能 ...

  2. Log4J日志组件

    Log4j,  log for java, 开源的日志组件! 使用步骤: 1. 下载组件,引入jar文件; log4j-1.2.11.jar 2. 配置 :  src/log4j.properties ...

  3. matplotlib展现混淆矩阵

    1.展现混淆矩阵 import matplotlib.pyplot as plt import itertools def plot_confusion_matrix(cm, classes, tit ...

  4. shell中变量计算

    year=44 1.let,不需要$引用变量 let m=year+3 echo $m 2.(()) m=$((year+3)) 3.[  ],注意两边一定要有空格 m=$[ year+3 ] 4. ...

  5. 五十七:flask文件上传之使用flask-wtf验证上传的文件

    1.安装:pip install flask-wtf2.定义表单验证的时候,对文件的字段,需使用:FileField3.验证器从flask_wtf.file中导入,FileRequired为验证文件必 ...

  6. 网络实验 03-交换机划分VLAN配置

    交换机划分VLAN配置 一.实验目标 理解虚拟 LAN(VLAN)基本原理 掌握一般交换机按端口划分 VLAN的配置方法 掌握Tag VLAN配置方法 二.实验背景 某一公司内财务部.销售部的PC通过 ...

  7. web端测试之封装公共部分

    from time import * from selenium import webdriver def login(self,username,passwd): self.dr=webdriver ...

  8. python-https状态码

    HTTP状态码状态码的职责是当客户端向服务器发送请求时,描述返回的请求结果.借助状态码,用户可以知道服务器端是正常处理了请求,还是出现了错误. 状态码的类别 >>>状态码 类别 说明 ...

  9. Linux 基础整理

    Linux系统的启动过程大体上可分为五部分:内核的引导:运行init:系统初始化:建立终端 :用户登录系统. 用户登录 Linux的账号验证程序是login,login会接收mingetty传来的用户 ...

  10. [转帖]linux中systemctl详细理解及常用命令

    linux中systemctl详细理解及常用命令 2019年06月28日 16:16:52 思维的深度 阅读数 30 https://blog.csdn.net/skh2015java/article ...