在 subclassed_model.py 中,通过对 tf.keras.Model 进行子类化,设计了两个自定义模型。

 import tensorflow as tf
tf.enable_eager_execution() # parameters
UNITS = 8 class Encoder(tf.keras.Model):
def __init__(self):
super(Encoder, self).__init__()
self.fc1 = tf.keras.layers.Dense(units=UNITS * 2, activation='relu')
self.fc2 = tf.keras.layers.Dense(units=UNITS, activation='relu') def call(self, inputs):
r = self.fc1(inputs)
return self.fc2(r) class Decoder(tf.keras.Model):
def __init__(self):
super(Decoder, self).__init__()
self.fc = tf.keras.layers.Dense(units=1) def call(self, inputs):
return self.fc(inputs)

在 save_subclassed_model.py 中,创建了 5000 组训练数据集,实例化 Encoder()、Decoder() 模型,优化器采用 tf.train.AdamOptimizer(),以均方误差作为 Loss 函数。训练过程中,每 5 个 epoch 保存一次模型。

 from subclassed_model import *

 import numpy as np
import matplotlib.pyplot as plt
import os import tensorflow as tf
tf.enable_eager_execution() # create training data
X = np.linspace(-1, 1, 5000)
np.random.shuffle(X)
y = X ** 3 + 1 + np.random.normal(0, 0.05, (5000,)) # plot data
plt.scatter(X, y)
plt.show() # training dataset
BATCH_SIZE = 16
BUFFER_SIZE = 128 training_dataset = tf.data.Dataset.from_tensor_slices((X, y)).batch(BATCH_SIZE).shuffle(BUFFER_SIZE) # initialize subclassed models
encoder = Encoder()
decoder = Decoder() optimizer = tf.train.AdamOptimizer() # loss function
def loss_function(real, pred):
return tf.losses.mean_squared_error(labels=real, predictions=pred) # training
EPOCHS = 15 # checkpoint
checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, 'ckpt')
checkpoint = tf.train.Checkpoint(optimizer=optimizer,
encoder=encoder,
decoder=decoder)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir) for epoch in range(EPOCHS):
epoch_loss = 0 for (batch, (x, y)) in enumerate(training_dataset):
x = tf.cast(x, tf.float32)
y = tf.cast(y, tf.float32)
x = tf.expand_dims(x, axis=1) # tf.Tensor([...], shape=(16, 1), dtype=float32)
y = tf.expand_dims(y, axis=1) # tf.Tensor([...], shape=(16, 1), dtype=float32) with tf.GradientTape() as tape:
y_ = encoder(x)
prediction = decoder(y_)
batch_loss = loss_function(real=y, pred=prediction) grads = tape.gradient(batch_loss, encoder.variables + decoder.variables)
optimizer.apply_gradients(zip(grads, encoder.variables + decoder.variables),
global_step=tf.train.get_or_create_global_step()) epoch_loss += batch_loss if (batch + 1) % 100 == 0:
print('Epoch {} Batch {} Loss {:.4f}'.format(epoch + 1,
batch + 1,
batch_loss.numpy())) print('Epoch {} Loss {:.4f}'.format(epoch + 1, epoch_loss / len(X))) if (epoch + 1) % 5 == 0:
checkpoint.save(file_prefix=checkpoint_prefix)

运行 save_subclassed_model.py。

2019-06-27 12:57:14.253635: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2019-06-27 12:57:15.660142: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0 with properties:
name: GeForce GTX 1060 major: 6 minor: 1 memoryClockRate(GHz): 1.6705
pciBusID: 0000:01:00.0
totalMemory: 6.00GiB freeMemory: 4.97GiB
2019-06-27 12:57:15.660397: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0
2019-06-27 12:57:16.488227: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-06-27 12:57:16.488385: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988] 0
2019-06-27 12:57:16.488476: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0: N
2019-06-27 12:57:16.488772: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4722 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060, pci bus id: 0000:01:00.0, compute capability: 6.1)
Epoch 1 Batch 100 Loss 0.1120
Epoch 1 Batch 200 Loss 0.0179
Epoch 1 Batch 300 Loss 0.0347
Epoch 1 Loss 0.0111
Epoch 2 Batch 100 Loss 0.0144
Epoch 2 Batch 200 Loss 0.0097
Epoch 2 Batch 300 Loss 0.0141
Epoch 2 Loss 0.0012
Epoch 3 Batch 100 Loss 0.0060
Epoch 3 Batch 200 Loss 0.0037
Epoch 3 Batch 300 Loss 0.0054
Epoch 3 Loss 0.0007
Epoch 4 Batch 100 Loss 0.0088
Epoch 4 Batch 200 Loss 0.0038
Epoch 4 Batch 300 Loss 0.0093
Epoch 4 Loss 0.0004
Epoch 5 Batch 100 Loss 0.0039
Epoch 5 Batch 200 Loss 0.0044
Epoch 5 Batch 300 Loss 0.0031
Epoch 5 Loss 0.0003
Epoch 6 Batch 100 Loss 0.0025
Epoch 6 Batch 200 Loss 0.0038
Epoch 6 Batch 300 Loss 0.0027
Epoch 6 Loss 0.0002
Epoch 7 Batch 100 Loss 0.0026
Epoch 7 Batch 200 Loss 0.0032
Epoch 7 Batch 300 Loss 0.0041
Epoch 7 Loss 0.0002
Epoch 8 Batch 100 Loss 0.0022
Epoch 8 Batch 200 Loss 0.0031
Epoch 8 Batch 300 Loss 0.0026
Epoch 8 Loss 0.0002
Epoch 9 Batch 100 Loss 0.0040
Epoch 9 Batch 200 Loss 0.0014
Epoch 9 Batch 300 Loss 0.0040
Epoch 9 Loss 0.0002
Epoch 10 Batch 100 Loss 0.0023
Epoch 10 Batch 200 Loss 0.0030
Epoch 10 Batch 300 Loss 0.0038
Epoch 10 Loss 0.0002
Epoch 11 Batch 100 Loss 0.0028
Epoch 11 Batch 200 Loss 0.0020
Epoch 11 Batch 300 Loss 0.0025
Epoch 11 Loss 0.0002
Epoch 12 Batch 100 Loss 0.0027
Epoch 12 Batch 200 Loss 0.0045
Epoch 12 Batch 300 Loss 0.0021
Epoch 12 Loss 0.0002
Epoch 13 Batch 100 Loss 0.0016
Epoch 13 Batch 200 Loss 0.0033
Epoch 13 Batch 300 Loss 0.0024
Epoch 13 Loss 0.0002
Epoch 14 Batch 100 Loss 0.0034
Epoch 14 Batch 200 Loss 0.0028
Epoch 14 Batch 300 Loss 0.0033
Epoch 14 Loss 0.0002
Epoch 15 Batch 100 Loss 0.0019
Epoch 15 Batch 200 Loss 0.0030
Epoch 15 Batch 300 Loss 0.0037
Epoch 15 Loss 0.0002 Process finished with exit code 0

查看 checkpoint_dir 目录下的文件。


在 load_subclassed_model.py 中,创建了 200 组测试数据,加载了 the latest checkpoint 中保存的模型参数,对模型进行了测试。

 from subclassed_model import *

 import numpy as np
import matplotlib.pyplot as plt import tensorflow as tf
tf.enable_eager_execution() # load model
encoder = Encoder()
decoder = Decoder()
optimizer = tf.train.AdamOptimizer() checkpoint_dir = './training_checkpoints' checkpoint = tf.train.Checkpoint(optimizer=optimizer,
encoder=encoder,
decoder=decoder)
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir)) # build model
BATCH_SIZE = 16 encoder.build(input_shape=tf.TensorShape((BATCH_SIZE, 1)))
decoder.build(input_shape=tf.TensorShape((BATCH_SIZE, UNITS))) encoder.summary()
decoder.summary() # create validation data
X_test = np.linspace(-1, 1, 200) # validation dataset
val_dataset = tf.data.Dataset.from_tensor_slices(X_test).batch(1) # predict and plot
results = []
for (batch, x) in enumerate(val_dataset):
x = tf.cast(x, tf.float32)
x = tf.expand_dims(x, axis=1)
y_ = encoder(x)
prediction = decoder(y_)
# print(prediction.numpy()[0][0])
results.append(prediction.numpy()[0][0]) # plot results
plt.scatter(X_test, results)
plt.show()

运行 load_subclassed_model.py。

2019-06-27 13:27:40.712260: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2019-06-27 13:27:42.105938: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0 with properties:
name: GeForce GTX 1060 major: 6 minor: 1 memoryClockRate(GHz): 1.6705
pciBusID: 0000:01:00.0
totalMemory: 6.00GiB freeMemory: 4.97GiB
2019-06-27 13:27:42.106200: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0
2019-06-27 13:27:42.921364: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-06-27 13:27:42.921510: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988] 0
2019-06-27 13:27:42.921594: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0: N
2019-06-27 13:27:42.921777: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4722 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060, pci bus id: 0000:01:00.0, compute capability: 6.1)
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) multiple 32
_________________________________________________________________
dense_1 (Dense) multiple 136
=================================================================
Total params: 168
Trainable params: 168
Non-trainable params: 0
_________________________________________________________________
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_2 (Dense) multiple 9
=================================================================
Total params: 9
Trainable params: 9
Non-trainable params: 0
_________________________________________________________________ Process finished with exit code 0

版权声明:本文为博主原创文章,欢迎转载,转载请注明作者及原文出处!

[Tensorflow] 使用 tf.train.Checkpoint() 保存 / 加载 keras subclassed model的更多相关文章

  1. [Tensorflow] 使用 model.save_weights() 保存 / 加载 Keras Subclassed Model

    在 parameters.py 中,定义了各类参数. # training data directory TRAINING_DATA_DIR = './data/' # checkpoint dire ...

  2. docker 保存 加载(导入 导出镜像

    tensorflow 的docker镜像很大,pull一次由于墙经常失败.其实docker 可以将镜像导出再导入. 保存加载(tensorflow)镜像 1) 查看镜像 docker images 如 ...

  3. 优化tableView加载cell与model的过程

    优化tableView加载cell与model的过程 效果图 说明 1. 用多态的特性来优化tableView加载cell与model的过程 2. swift写起来果然要比Objective-C简洁了 ...

  4. TensorFlow:tf.train.Saver()模型保存与恢复

    1.保存 将训练好的模型参数保存起来,以便以后进行验证或测试.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf.train.S ...

  5. tensorflow的tf.train.Saver()模型保存与恢复

    将训练好的模型参数保存起来,以便以后进行验证或测试.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf.train.Saver( ...

  6. tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数(转)

    tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...

  7. tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数

    tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...

  8. 【转载】 tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数

    原文地址: https://blog.csdn.net/dcrmg/article/details/79776876 ----------------------------------------- ...

  9. tensorflow之tf.train.exponential_decay()指数衰减法

    exponential_decay(learning_rate,  global_steps, decay_steps, decay_rate, staircase=False, name=None) ...

随机推荐

  1. redis事务机制

    目录 一.事务的实现 1.multi——开启事务 2.命令入队列 3.exec——执行事务 4.DISCARD——放弃执行 5.错误处理 二.watch命令 redis官方文档:Redis trans ...

  2. 类似于ORACLE decode 的用法

    SQL Server 2008中的写法:select t.PROJECTNAME, t.BUILDCONTENTSCALE,  CASE t.PROJECTLEVEL      WHEN '0' TH ...

  3. 慕课网SSM仿大众点评

    目录: 配置部分: 1 配置报错不支持diamond运算符 运行部分: 1 登录的账号密码 2 运行项目是报错session超时 配置部分 1 配置报错不支持diamond运算符 原报错信息如下:id ...

  4. SIGAI深度学习第六集 受限玻尔兹曼机

    讲授玻尔兹曼分布.玻尔兹曼机的网络结构.实际应用.训练算法.深度玻尔兹曼机等.受限玻尔兹曼机(RBM)是一种概率型的神经网络.和其他神经网络的区别:神经网络的输出是确定的,而RBM的神经元的输出值是不 ...

  5. PHP mysqli_connect() 函数

    打开一个到 MySQL 服务器的新的连接: mysqli_connect(host,username,password,dbname,port,socket); <?php $con=mysql ...

  6. dubbo配置文件

    <dubbo:service/> 服务配置,用于暴露一个服务,定义服务的元信息,一个服务可以用多个协议暴露,一个服务也可以注册到多个注册中心.<dubbo:reference/> ...

  7. Oracle 审计 部署监控 user DML操作

    1.移动audit表及索引到dbadmin表空间 alter table aud$ move tablespace DBADMIN;alter table AUDIT$ move tablespace ...

  8. CF1153F Serval and Bonus Problem 【期望】

    题目链接:洛谷 作为一只沉迷数学多年的蒟蒻OIer,在推柿子和dp之间肯定要选推柿子的! 首先假设线段长度为1,最后答案乘上$l$即可. 对于$x$这个位置,被区间覆盖的概率是$2x(1-x)$(线段 ...

  9. python-selenium视频教程分享

    1.python电子书 2.课件 3.前段调试工具 4.文档资料 5.python-selenium课程列表 6.sele01-sele22 百度网盘连接:链接: https://pan.baidu. ...

  10. luogu2331

    P2331 [SCOI2005]最大子矩阵 题目描述 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 输入格式 第一行为n,m,k ...