[Tensorflow] 使用 tf.train.Checkpoint() 保存 / 加载 keras subclassed model
在 subclassed_model.py 中,通过对 tf.keras.Model 进行子类化,设计了两个自定义模型。
import tensorflow as tf
tf.enable_eager_execution() # parameters
UNITS = 8 class Encoder(tf.keras.Model):
def __init__(self):
super(Encoder, self).__init__()
self.fc1 = tf.keras.layers.Dense(units=UNITS * 2, activation='relu')
self.fc2 = tf.keras.layers.Dense(units=UNITS, activation='relu') def call(self, inputs):
r = self.fc1(inputs)
return self.fc2(r) class Decoder(tf.keras.Model):
def __init__(self):
super(Decoder, self).__init__()
self.fc = tf.keras.layers.Dense(units=1) def call(self, inputs):
return self.fc(inputs)
在 save_subclassed_model.py 中,创建了 5000 组训练数据集,实例化 Encoder()、Decoder() 模型,优化器采用 tf.train.AdamOptimizer(),以均方误差作为 Loss 函数。训练过程中,每 5 个 epoch 保存一次模型。
from subclassed_model import * import numpy as np
import matplotlib.pyplot as plt
import os import tensorflow as tf
tf.enable_eager_execution() # create training data
X = np.linspace(-1, 1, 5000)
np.random.shuffle(X)
y = X ** 3 + 1 + np.random.normal(0, 0.05, (5000,)) # plot data
plt.scatter(X, y)
plt.show() # training dataset
BATCH_SIZE = 16
BUFFER_SIZE = 128 training_dataset = tf.data.Dataset.from_tensor_slices((X, y)).batch(BATCH_SIZE).shuffle(BUFFER_SIZE) # initialize subclassed models
encoder = Encoder()
decoder = Decoder() optimizer = tf.train.AdamOptimizer() # loss function
def loss_function(real, pred):
return tf.losses.mean_squared_error(labels=real, predictions=pred) # training
EPOCHS = 15 # checkpoint
checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, 'ckpt')
checkpoint = tf.train.Checkpoint(optimizer=optimizer,
encoder=encoder,
decoder=decoder)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir) for epoch in range(EPOCHS):
epoch_loss = 0 for (batch, (x, y)) in enumerate(training_dataset):
x = tf.cast(x, tf.float32)
y = tf.cast(y, tf.float32)
x = tf.expand_dims(x, axis=1) # tf.Tensor([...], shape=(16, 1), dtype=float32)
y = tf.expand_dims(y, axis=1) # tf.Tensor([...], shape=(16, 1), dtype=float32) with tf.GradientTape() as tape:
y_ = encoder(x)
prediction = decoder(y_)
batch_loss = loss_function(real=y, pred=prediction) grads = tape.gradient(batch_loss, encoder.variables + decoder.variables)
optimizer.apply_gradients(zip(grads, encoder.variables + decoder.variables),
global_step=tf.train.get_or_create_global_step()) epoch_loss += batch_loss if (batch + 1) % 100 == 0:
print('Epoch {} Batch {} Loss {:.4f}'.format(epoch + 1,
batch + 1,
batch_loss.numpy())) print('Epoch {} Loss {:.4f}'.format(epoch + 1, epoch_loss / len(X))) if (epoch + 1) % 5 == 0:
checkpoint.save(file_prefix=checkpoint_prefix)
运行 save_subclassed_model.py。

2019-06-27 12:57:14.253635: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2019-06-27 12:57:15.660142: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0 with properties:
name: GeForce GTX 1060 major: 6 minor: 1 memoryClockRate(GHz): 1.6705
pciBusID: 0000:01:00.0
totalMemory: 6.00GiB freeMemory: 4.97GiB
2019-06-27 12:57:15.660397: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0
2019-06-27 12:57:16.488227: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-06-27 12:57:16.488385: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988] 0
2019-06-27 12:57:16.488476: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0: N
2019-06-27 12:57:16.488772: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4722 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060, pci bus id: 0000:01:00.0, compute capability: 6.1)
Epoch 1 Batch 100 Loss 0.1120
Epoch 1 Batch 200 Loss 0.0179
Epoch 1 Batch 300 Loss 0.0347
Epoch 1 Loss 0.0111
Epoch 2 Batch 100 Loss 0.0144
Epoch 2 Batch 200 Loss 0.0097
Epoch 2 Batch 300 Loss 0.0141
Epoch 2 Loss 0.0012
Epoch 3 Batch 100 Loss 0.0060
Epoch 3 Batch 200 Loss 0.0037
Epoch 3 Batch 300 Loss 0.0054
Epoch 3 Loss 0.0007
Epoch 4 Batch 100 Loss 0.0088
Epoch 4 Batch 200 Loss 0.0038
Epoch 4 Batch 300 Loss 0.0093
Epoch 4 Loss 0.0004
Epoch 5 Batch 100 Loss 0.0039
Epoch 5 Batch 200 Loss 0.0044
Epoch 5 Batch 300 Loss 0.0031
Epoch 5 Loss 0.0003
Epoch 6 Batch 100 Loss 0.0025
Epoch 6 Batch 200 Loss 0.0038
Epoch 6 Batch 300 Loss 0.0027
Epoch 6 Loss 0.0002
Epoch 7 Batch 100 Loss 0.0026
Epoch 7 Batch 200 Loss 0.0032
Epoch 7 Batch 300 Loss 0.0041
Epoch 7 Loss 0.0002
Epoch 8 Batch 100 Loss 0.0022
Epoch 8 Batch 200 Loss 0.0031
Epoch 8 Batch 300 Loss 0.0026
Epoch 8 Loss 0.0002
Epoch 9 Batch 100 Loss 0.0040
Epoch 9 Batch 200 Loss 0.0014
Epoch 9 Batch 300 Loss 0.0040
Epoch 9 Loss 0.0002
Epoch 10 Batch 100 Loss 0.0023
Epoch 10 Batch 200 Loss 0.0030
Epoch 10 Batch 300 Loss 0.0038
Epoch 10 Loss 0.0002
Epoch 11 Batch 100 Loss 0.0028
Epoch 11 Batch 200 Loss 0.0020
Epoch 11 Batch 300 Loss 0.0025
Epoch 11 Loss 0.0002
Epoch 12 Batch 100 Loss 0.0027
Epoch 12 Batch 200 Loss 0.0045
Epoch 12 Batch 300 Loss 0.0021
Epoch 12 Loss 0.0002
Epoch 13 Batch 100 Loss 0.0016
Epoch 13 Batch 200 Loss 0.0033
Epoch 13 Batch 300 Loss 0.0024
Epoch 13 Loss 0.0002
Epoch 14 Batch 100 Loss 0.0034
Epoch 14 Batch 200 Loss 0.0028
Epoch 14 Batch 300 Loss 0.0033
Epoch 14 Loss 0.0002
Epoch 15 Batch 100 Loss 0.0019
Epoch 15 Batch 200 Loss 0.0030
Epoch 15 Batch 300 Loss 0.0037
Epoch 15 Loss 0.0002 Process finished with exit code 0
查看 checkpoint_dir 目录下的文件。

在 load_subclassed_model.py 中,创建了 200 组测试数据,加载了 the latest checkpoint 中保存的模型参数,对模型进行了测试。
from subclassed_model import * import numpy as np
import matplotlib.pyplot as plt import tensorflow as tf
tf.enable_eager_execution() # load model
encoder = Encoder()
decoder = Decoder()
optimizer = tf.train.AdamOptimizer() checkpoint_dir = './training_checkpoints' checkpoint = tf.train.Checkpoint(optimizer=optimizer,
encoder=encoder,
decoder=decoder)
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir)) # build model
BATCH_SIZE = 16 encoder.build(input_shape=tf.TensorShape((BATCH_SIZE, 1)))
decoder.build(input_shape=tf.TensorShape((BATCH_SIZE, UNITS))) encoder.summary()
decoder.summary() # create validation data
X_test = np.linspace(-1, 1, 200) # validation dataset
val_dataset = tf.data.Dataset.from_tensor_slices(X_test).batch(1) # predict and plot
results = []
for (batch, x) in enumerate(val_dataset):
x = tf.cast(x, tf.float32)
x = tf.expand_dims(x, axis=1)
y_ = encoder(x)
prediction = decoder(y_)
# print(prediction.numpy()[0][0])
results.append(prediction.numpy()[0][0]) # plot results
plt.scatter(X_test, results)
plt.show()
运行 load_subclassed_model.py。

2019-06-27 13:27:40.712260: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2019-06-27 13:27:42.105938: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0 with properties:
name: GeForce GTX 1060 major: 6 minor: 1 memoryClockRate(GHz): 1.6705
pciBusID: 0000:01:00.0
totalMemory: 6.00GiB freeMemory: 4.97GiB
2019-06-27 13:27:42.106200: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0
2019-06-27 13:27:42.921364: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-06-27 13:27:42.921510: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988] 0
2019-06-27 13:27:42.921594: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0: N
2019-06-27 13:27:42.921777: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4722 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060, pci bus id: 0000:01:00.0, compute capability: 6.1)
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) multiple 32
_________________________________________________________________
dense_1 (Dense) multiple 136
=================================================================
Total params: 168
Trainable params: 168
Non-trainable params: 0
_________________________________________________________________
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_2 (Dense) multiple 9
=================================================================
Total params: 9
Trainable params: 9
Non-trainable params: 0
_________________________________________________________________ Process finished with exit code 0
版权声明:本文为博主原创文章,欢迎转载,转载请注明作者及原文出处!
[Tensorflow] 使用 tf.train.Checkpoint() 保存 / 加载 keras subclassed model的更多相关文章
- [Tensorflow] 使用 model.save_weights() 保存 / 加载 Keras Subclassed Model
在 parameters.py 中,定义了各类参数. # training data directory TRAINING_DATA_DIR = './data/' # checkpoint dire ...
- docker 保存 加载(导入 导出镜像
tensorflow 的docker镜像很大,pull一次由于墙经常失败.其实docker 可以将镜像导出再导入. 保存加载(tensorflow)镜像 1) 查看镜像 docker images 如 ...
- 优化tableView加载cell与model的过程
优化tableView加载cell与model的过程 效果图 说明 1. 用多态的特性来优化tableView加载cell与model的过程 2. swift写起来果然要比Objective-C简洁了 ...
- TensorFlow:tf.train.Saver()模型保存与恢复
1.保存 将训练好的模型参数保存起来,以便以后进行验证或测试.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf.train.S ...
- tensorflow的tf.train.Saver()模型保存与恢复
将训练好的模型参数保存起来,以便以后进行验证或测试.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf.train.Saver( ...
- tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数(转)
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...
- tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...
- 【转载】 tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数
原文地址: https://blog.csdn.net/dcrmg/article/details/79776876 ----------------------------------------- ...
- tensorflow之tf.train.exponential_decay()指数衰减法
exponential_decay(learning_rate, global_steps, decay_steps, decay_rate, staircase=False, name=None) ...
随机推荐
- vue1 父子组件$emit,$on
- Python sleep()函数用法:线程睡眠
如果需要让当前正在执行的线程暂停一段时间,并进入阻塞状态,则可以通过调用 time 模块的 sleep(secs) 函数来实现.该函数可指定一个 secs 参数,用于指定线程阻塞多少秒. 当前线程调用 ...
- selenium怎样避免被服务器检测
selenium是用来完成浏览器自动化相关的操作.可以通过代码的形式制定一些基于浏览器自动化的相关操作(行为动作),当代码执行后,浏览器就会自动触发相关的事件.但这并不能避免服务器的检测.当在浏览器中 ...
- Java8-Atomic
import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util ...
- 省选模拟赛 Problem 3. count (矩阵快速幂优化DP)
Discription DarrellDarrellDarrell 在思考一道计算题. 给你一个尺寸为 1×N1 × N1×N 的长条,你可以在上面切很多刀,要求竖直地切并且且完后每块的长度都是整数. ...
- [Google Guava] 3-缓存
原文地址 译文地址 译者:许巧辉 校对:沈义扬 范例 01 LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder() ...
- python以下划线开头的变量和函数的作用
在python中,我们经常能看到很多变量名以_下划线开头,而且下划线的数量还不一样,那么这些变量的作用到底是什么? 变量名分类: # 以数字.字母开头: 正常的公有变量名a = 1def aa(): ...
- Codeforces Round #599 (Div. 2) A,B1,B2,C 【待补 D】
排序+暴力 #include<bits/stdc++.h> using namespace std; #define int long long #define N 1005000 int ...
- AtCoder Beginner Contest 116 C题 【题意:可以在任意区间【L,R】上加1,求通过最少加1次数得到题目给定的区间】】{思维好题}
C - Grand Garden In a flower bed, there are NN flowers, numbered 1,2,......,N1,2,......,N. Initially ...
- C++编译错误--C++连接redis:编译错误error C2371: “off_t”: 重定义;不同的基类型
编译错误:对于编译C++调用hiredis编译错误:error C2371: “off_t”: 重定义:不同的基类型,如下图: 可能的解决方案: 1. 因为hiredis预处理器定义了_OFF_T_D ...