matlab(8) Regularized logistic regression : 不同的λ(0,1,10,100)值对regularization的影响,对应不同的decision boundary\ 预测新的值和计算模型的精度predict.m
不同的λ(0,1,10,100)值对regularization的影响\ 预测新的值和计算模型的精度
%% ============= Part 2: Regularization and Accuracies =============
% Optional Exercise:
% In this part, you will get to try different values of lambda and
% see how regularization affects the decision coundart
%
% Try the following values of lambda (0, 1, 10, 100).
%
% How does the decision boundary change when you vary lambda? How does
% the training set accuracy vary?
%
% Initialize fitting parameters
initial_theta = zeros(size(X, 2), 1);
% Set regularization parameter lambda to 1 (you should vary this)
lambda = 1; %在这里设置λ=(0,1,10,100)
由下图可见,lambda=1时的效果最好,
λ=0时No regularization(overfitting);
λ=100时会too much regularization(underfitting),
% Set Options
options = optimset('GradObj', 'on', 'MaxIter', 400); %计算gradient,迭代的次数为400次
% Optimize
[theta, J, exit_flag] = ...
fminunc(@(t)(costFunctionReg(t, X, y, lambda)), initial_theta, options);
% Plot Boundary
plotDecisionBoundary(theta, X, y); %X已经mapFeature过了
hold on;
title(sprintf('lambda = %g', lambda)) % 会在%e和%f中自动选择一种格式,且无后缀0。
% Labels and Legend
xlabel('Microchip Test 1')
ylabel('Microchip Test 2')
legend('y = 1', 'y = 0', 'Decision boundary')
hold off;
% Compute accuracy on our training set
p = predict(theta, X);
fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100);
plotDecisionBoundary.m文件
function plotDecisionBoundary(theta, X, y)
%PLOTDECISIONBOUNDARY Plots the data points X and y into a new figure with
%the decision boundary defined by theta
% PLOTDECISIONBOUNDARY(theta, X,y) plots the data points with + for the
% positive examples and o for the negative examples. X is assumed to be
% a either
% 1) Mx3 matrix, where the first column is an all-ones column for the
% intercept.
% 2) MxN, N>3 matrix, where the first column is all-ones
% Plot Data
plotData(X(:,2:3), y);
hold on
if size(X, 2) <= 3
% Only need 2 points to define a line, so choose two endpoints
plot_x = [min(X(:,2))-2, max(X(:,2))+2];
% Calculate the decision boundary line
plot_y = (-1./theta(3)).*(theta(2).*plot_x + theta(1));
% Plot, and adjust axes for better viewing
plot(plot_x, plot_y)
% Legend, specific for the exercise
legend('Admitted', 'Not admitted', 'Decision Boundary')
axis([30, 100, 30, 100])
else %X已经mapFeature过了(有28个features),调用这部分的程序
% Here is the grid range
u = linspace(-1, 1.5, 50);
v = linspace(-1, 1.5, 50);
z = zeros(length(u), length(v));
% Evaluate z = theta*x over the grid
for i = 1:length(u)
for j = 1:length(v)
z(i,j) = mapFeature(u(i), v(j))*theta;
end
end
z = z'; % important to transpose z before calling contour
% Plot z = 0
% Notice you need to specify the range [0, 0]
contour(u, v, z, [0, 0], 'LineWidth', 2) %画等值线.contour(X,Y,Z,[v v]) to draw contours for the single level v.
end %if size(X, 2) <= 3 else的end
hold off
end
predict.m文件
function p = predict(theta, X)
%PREDICT Predict whether the label is 0 or 1 using learned logistic
%regression parameters theta
% p = PREDICT(theta, X) computes the predictions for X using a
% threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1)
m = size(X, 1); % Number of training examples
% You need to return the following variables correctly
p = zeros(m, 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned logistic regression parameters.
% You should set p to a vector of 0's and 1's
%
for i=1:m
if sigmoid(X(i,:) * theta) >=0.5
p(i) = 1;
else
p(i) = 0;
end
end
% =========================================================================
end
matlab(8) Regularized logistic regression : 不同的λ(0,1,10,100)值对regularization的影响,对应不同的decision boundary\ 预测新的值和计算模型的精度predict.m的更多相关文章
- matlab(7) Regularized logistic regression : mapFeature(将feature增多) and costFunctionReg
Regularized logistic regression : mapFeature(将feature增多) and costFunctionReg ex2_reg.m文件中的部分内容 %% == ...
- matlab(6) Regularized logistic regression : plot data(画样本图)
Regularized logistic regression : plot data(画样本图) ex2data2.txt 0.051267,0.69956,1-0.092742,0.68494, ...
- machine learning(15) --Regularization:Regularized logistic regression
Regularization:Regularized logistic regression without regularization 当features很多时会出现overfitting现象,图 ...
- matlab(5) : 求得θ值后用模型来预测 / 计算模型的精度
求得θ值后用模型来预测 / 计算模型的精度 ex2.m部分程序 %% ============== Part 4: Predict and Accuracies ==============% Af ...
- ResourceWarning: unclosed <socket.socket fd=864, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('10.100.x.x', 37321), raddr=('10.1.x.x', 8500)>解决办法
将代码封装,并使用unittest调用时,返回如下警告: C:\python3.6\lib\collections\__init__.py:431: ResourceWarning: unclosed ...
- Regularized logistic regression
要解决的问题是,给出了具有2个特征的一堆训练数据集,从该数据的分布可以看出它们并不是非常线性可分的,因此很有必要用更高阶的特征来模拟.例如本程序中个就用到了特征值的6次方来求解. Data To be ...
- 编程作业2.2:Regularized Logistic regression
题目 在本部分的练习中,您将使用正则化的Logistic回归模型来预测一个制造工厂的微芯片是否通过质量保证(QA),在QA过程中,每个芯片都会经过各种测试来保证它可以正常运行.假设你是这个工厂的产品经 ...
- 吴恩达机器学习笔记22-正则化逻辑回归模型(Regularized Logistic Regression)
针对逻辑回归问题,我们在之前的课程已经学习过两种优化算法:我们首先学习了使用梯度下降法来优化代价函数
- Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression
原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性 ...
随机推荐
- jira7.3.6 windows7下安装、中文及破解
一.事前准备 1:JDK下载并安装:jdk-6u45-windows-i586.exe 2:MySQL JDBC连接驱动:mysql-connector-java-5.1.25.zip 3:MySQL ...
- JDK线程池框架Executor源码阅读
Executor框架 Executor ExecutorService AbstractExecutorService ThreadPoolExecutor ThreadPoolExecutor继承A ...
- P1993 小K的农场(差分约束)
小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b至少多种植了 ...
- IdentityServer4 学习三
ClientCredentials客户端类型实现 客户端应用向IdentityServer请求AccessToken,IdentityServer验证通过把AccessToken返回给客户端应用,客户 ...
- HDU 1016Presentation Error
这是一道典型的DFS题目.幻想有n个箱子,每次都向箱子里扔一个数,(当然第一个是必定是1,因为题目要求按字典序输出).判断输出的条件就是,当我移动到第n+1个箱子的时候,就要return了,当然还要判 ...
- 【工具】导入导出 Excel
文章目录 前言 当前支持的功能 方法api 配置 如何使用(Demo) 实现思路(该工具类可正确的一个大前提) 后记 前言 之前写的项目中,有个需求,需要导出导入Excel表格: 本来很简单的一件事, ...
- Python中nonlocal的用法
class Text: def __init__(self): pass def big(self): n, m = 0, 0 def a(): nonlocal n n += 1 print(n) ...
- Linux下用命令来执行kettle文件资源库的文件ktr与kjb的方法
转载地址: https://blog.csdn.net/zuolovefu/article/details/78083445 1. 准备工作 一个简单的job,一个简单的trans. trans:读取 ...
- 怎样理解window对象的几组位置大小属性
第一组: window.screenX 和 window.screenY, 只读, 返回浏览器窗口左上角与屏幕左上角的水平距离和垂直距离(单位像素); 第二组: window.innerHeight ...
- 使用docker搭建reids主从,哨兵。
Redis主从配置,如果没有真机就要用虚拟机,使用Docke for Windows host网络有问题. 准备: 1.安装虚拟机. 2.下载redis的安装文件:http://download.re ...