DS AVL树详解
先说说二叉搜索树: 是有序的二叉树,根值>左节点值,右节点值>根值。

如果要查找某个值,二叉搜索树和二分查找一样,每进行一次值比较,就会减少一半的遍历区间。
但是,如果树插入的值一直递增/递减,就会出现这种情况:

这样,二叉树性能就完全失去了,直接退化成了顺序表,查找效率低下。
由此,引入了能保持性能最佳的二叉搜索树。
AVL树: 具有高度平衡的二叉搜索树。
性质: 1.它的左右子树都是AVL树
2.左右子树高度差(简称平衡因子)的绝对值不超过1

搜索的时间复杂度: O(log2(n))
AVL树节点
struct AVLTree{
pair<K,V> kv;
AVLTreeNode* left;
AVLTreeNode* right;
AVLTreeNode* parent;
int bf; //balance factor
};
与二叉搜索树不同的是引入了父节点(方便后面讲的旋转)和平衡因子(保持高度平衡的核心)。
AVL树的插入:
在插入节点后,需要调整平衡:
1.bf更新规则:新增在左 父亲bf-1 ; 新增在右 父亲bf+1
2.持续往祖先更新 如果 祖先bf==0,祖先肯定是从1或者-1变来的,那就说明祖先所在子树的高度不变,停止更新;
祖先|bf|==1,祖先肯定是从0变来的,说明祖先所在子树高度变了,继续往上更新;
祖先|bf|==2,祖先肯定是从1或者-1变来的,说明高度已经不平衡了,需要旋转调整;
旋转:
1.左单旋: 新结点插在较高右子树右侧 2 1

2.右单旋: 新结点插在较高左子树左侧 -2 -1

3.左右双旋(先左单旋parent,再右单旋g): 新结点插在较高左子树右侧 -2 1 -> -2 -2 
4.右左双旋: 新结点插在较高右子树左侧 2 -1 -> 2 2

总结:
//右单旋
void RotateR(Node* parent)
{
Node* subL = parnet->left;
Node* subLR = subL->right; //右旋下去,原根左孩子成为新根
parent->left = subLR;
if(subLR) //LR不为空,才连接其父亲
subLR->parent = parent; //更新新根与原根的关系
subL->right = parent; //记录原根的父
Node* ppNode = parent->parent;
//更新新根与原根的关系
parent->parent = subL; //下面都是因为双向链表带来的问题
//更新原根父与新根的关系
//新根就是根节点
if(ppNode==nullptr)
{
root = subL;
root->parent = nullptr;
}
//新根更新与原根父的关系
else
{
if(ppNode->left==parent)
ppNode->left = subL;
else
ppNode->right = subL; subL->parent = ppNode;
}
//根据上图,更新部分节点平衡因子
parent->bf = subL->bf = 0;
}
//左单旋同理
void RotateL(Node* parent);
//右左双旋
void RotateRL(Node* parent)
{
Node* subR = parent->right;
Node* subRL = subR->left;
int bf = subRL->bf;
//右左双旋
RotateR(parent->right);
RotateL(parent); //更新双旋后的bf
//由于单旋会将bf置0,而双旋有三种情况,需要记录旋转前的新根的bf
//1.新结点插入后,subRL的bf是0 --- 插入的节点就是subRL
if(bf == 0)
{
parent->bf = subRL->bf = subR->bf = 0;
}
//2.新结点插入后,subRL的bf是1 --- 插入的节点在subRL右边
else if(bf == 1)
{
subR->bf = 0;
parent->bf = -1;
subRL->bf = 0;
}
//3.新结点插入后,subRL的bf是-1 --- 插入的节点在它subRL左边
else if(bf == -1)
{
parent->bf = 0;
subR->bf = 1;
subRL->bf = 0;
}
}
//左右双旋同理
void RotateLR(Node* parnet);
AVL树插入代码
bool Insert(const pair<K,V>& kv)
{
//插入结点
if(root == nullptr)
{
root=new Node(kv);
root->bf = 0;
return true;
}
Node* parent = nullptr;
Node* cur = root;
while(cur)
{
if(cur->kv.first < kv.first) else if(cur->kv.first > kv.first) else
return false;
}
cur = new Node(kv);
//父节点连接插入的结点
if(parent->kv.first < kv.first)
{
parent->right = cur;
cur->parent = parent;
}
else
{
...
} //调平衡
//1.新增在左 父亲bf-1 新增在右 父亲bf+1
//2.持续往祖先更新 if 祖先bf == 0,则祖先所在子树高度不变,停止往上更新
// if 祖先|bf| == 1,则祖先所在子树高度变了,继续往上更新
// if 祖先|bf| == 2,则祖先所在树不平衡,则旋转调整
//1.更新平衡因子
while(parent)
{
if(cur == parent->right)
parent->bf++;
else
parent->bf--; //高度不变,更新完成
if(parent->bf == 0)
break;
//高度变了,继续更新
else if(abs(parent->bf) == 1)
{
cur = parent;
parent = parent->parent;
}
//不平衡,旋转调整
else if(abs(parent->bf) == 2)
{
//判断旋转方式
if(parent->bf==2)
{
if(cur->bf==1)
RotateL(parent);
else if(cur->bf==-1)
RotateRL(parent);
}
else if(parent->bf==-2)
{
if(cur->bf==-1)
RotateR(parent);
else if(cur->bf==1)
RotateLR(parent);
}
break;
}
else
assert(false);
}
}
因为引入了bf和双向链表,所以有了很多坑,应该避免以下两点:
1.单旋完成后,注意更新其新根与原根父节点的连接关系
2.双旋完成后,注意根据双旋规律进行bf更新
DS AVL树详解的更多相关文章
- 数据结构图文解析之:AVL树详解及C++模板实现
0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...
- AVL树详解
AVL树 参考了:http://www.cppblog.com/cxiaojia/archive/2012/08/20/187776.html 修改了其中的错误,代码实现并亲自验证过. 平衡二叉树(B ...
- trie字典树详解及应用
原文链接 http://www.cnblogs.com/freewater/archive/2012/09/11/2680480.html Trie树详解及其应用 一.知识简介 ...
- Linux DTS(Device Tree Source)设备树详解之二(dts匹配及发挥作用的流程篇)【转】
转自:https://blog.csdn.net/radianceblau/article/details/74722395 版权声明:本文为博主原创文章,未经博主允许不得转载.如本文对您有帮助,欢迎 ...
- JavaScript---Dom树详解,节点查找方式(直接(id,class,tag),间接(父子,兄弟)),节点操作(增删改查,赋值节点,替换节点,),节点属性操作(增删改查),节点文本的操作(增删改查),事件
JavaScript---Dom树详解,节点查找方式(直接(id,class,tag),间接(父子,兄弟)),节点操作(增删改查,赋值节点,替换节点,),节点属性操作(增删改查),节点文本的操作(增删 ...
- 线段树详解 (原理,实现与应用)(转载自:http://blog.csdn.net/zearot/article/details/48299459)
原文地址:http://blog.csdn.net/zearot/article/details/48299459(如有侵权,请联系博主,立即删除.) 线段树详解 By 岩之痕 目录: 一:综述 ...
- Linux dts 设备树详解(二) 动手编写设备树dts
Linux dts 设备树详解(一) 基础知识 Linux dts 设备树详解(二) 动手编写设备树dts 文章目录 前言 硬件结构 设备树dts文件 前言 在简单了解概念之后,我们可以开始尝试写一个 ...
- Linux dts 设备树详解(一) 基础知识
Linux dts 设备树详解(一) 基础知识 Linux dts 设备树详解(二) 动手编写设备树dts 文章目录 1 前言 2 概念 2.1 什么是设备树 dts(device tree)? 2. ...
- trie树--详解
文章作者:yx_th000 文章来源:Cherish_yimi (http://www.cnblogs.com/cherish_yimi/) 转载请注明,谢谢合作.关键词:trie trie树 数据结 ...
随机推荐
- type of的返回值有哪些
typeof 10; // number typeof 'time'; //string typeof undefined; // undefined typeof null; // object t ...
- 全部文章> Maven
Maven 原 Maven中<resources>标签详解 &nbsp;&nbsp;&nbsp;&nbsp;& ...
- SDOI 二轮垫底鸡
SDOI 二轮垫底鸡 day0 准备爆零 没啥好准备考试的,12.00出发,试机敲抄个ntt,在宾馆不知道颓啥. day1 爆零爬山 T1noip的题目也放到省选上. 第一档线段树?肯定不写,直接上1 ...
- ServerManager.exe 0xc0000135 应用程序错误
问题: 将 Windows Server 2016 .NET Framework移除. IIS卸载后, Server Manager.exe.事件查看器等都无法正常开启. 解决方案: 在运行中,输入C ...
- Tecplot——为动画添加求解时间(翻译)
翻译自:<Tecplot 360 Getting Started Manual>中的Scenic Detour: Add Solution Time Caption 首先展示效果: 在画图 ...
- Hyper-V中安装CentOS7设置静态ip并且可以连接外网
https://blog.csdn.net/xj19940904/article/details/89165002 https://blog.csdn.net/u011598235/article/d ...
- C++11原子操作与无锁编程(转)
不讲语言特性,只从工程角度出发,个人觉得C++标准委员会在C++11中对多线程库的引入是有史以来做得最人道的一件事:今天我将就C++11多线程中的atomic原子操作展开讨论:比较互斥锁,自旋锁(sp ...
- 修改Jupyter Notebook默认文件存储路径(已安装Anaconda)
https://blog.csdn.net/weixin_44799144/article/details/91823079 修改Jupyter Notebook默认文件存储路径首先,安装好Anaco ...
- Sublime Text 3.2.1详细安装破解教程,附最新激活码license(全网独家可用有效)
title: "Sublime Text 3.2.1详细安装破解教程,附最新激活码license(全网独家可用有效)" categories: soft tags: soft au ...
- RequireJS - 快速指南
原文: https://www.tutorialspoint.com/requirejs/requirejs_quick_guide.htm RequireJS - 概述 RequireJS是一个Ja ...