题目大意:求 $\sum\limits_{n=l}^{r}\dbinom{f_n}{k}\bmod 10^9+7$。其中 $f_n$ 是长度为 $n$ 的 $01$ 序列中,没有连续两个或超过两个 $0$ 的个数。

$1\le k\le 200,1\le l\le r\le 10^{18}$。


先考虑如何求 $f_n$。

令 $g[i][j]$ 表示长度为 $i$,结尾是 $j$ 的序列个数。

$$g[i][0]=g[i-1][1]$$

$$g[i][1]=g[i-1][0]+g[i-1][1]$$

将第一个式子代入第二个式子有 $g[i][1]=g[i-2][1]+g[i-1][1]$。

手玩发现 $g[1][1]=1,g[2][1]=2$。那么有 $g[i][1]=fib_{i+1}$。($fib$ 是斐波那契数列)

要求 $g[i][0]+g[i][1]=g[i-1][1]+g[i][1]=g[i+1][1]=fib_{i+2}$。

那么式子就是 $\sum\limits_{n=l+2}^{r+2}\dbinom{fib_n}{k}$。(为方便 $l+=2,r+=2$,下文假设是 $l$ 到 $r$)

$$\sum\limits_{n=l}^r\dbinom{fib_n}{k}$$

$$\dfrac{1}{k!}\sum\limits_{n=l}^rfib_n^{\underline{k}}$$

$$\dfrac{1}{k!}\sum\limits_{n=l}^r\sum\limits_{i=0}^k(-1)^{k-i}\begin{bmatrix}k\\i\end{bmatrix}fib_n^i$$

$$\dfrac{1}{k!}\sum\limits_{i=0}^k(-1)^{k-i}\begin{bmatrix}k\\i\end{bmatrix}\sum\limits_{n=l}^rfib_n^i$$

前面可以随便枚举,然而斐波那契 $k$ 次方前缀和这东西怎么搞?

这时就要用上大名鼎鼎的通项公式:(没记住的也可以现场用特征方程推)

$$fib_n=\dfrac{\sqrt{5}}{5}(\dfrac{1+\sqrt{5}}{2})^n-\dfrac{\sqrt{5}}{5}(\dfrac{1-\sqrt{5}}{2})^n$$

令 $a=\dfrac{\sqrt{5}}{5},b=-\dfrac{\sqrt{5}}{5},x=\dfrac{1+\sqrt{5}}{2},y=\dfrac{1-\sqrt{5}}{2}$,那么 $fib_n=ax^n+by^n$。

$$\dfrac{1}{k!}\sum\limits_{i=0}^k(-1)^{k-i}\begin{bmatrix}k\\i\end{bmatrix}\sum\limits_{n=l}^r(ax^n+by^n)^i$$

$$\dfrac{1}{k!}\sum\limits_{i=0}^k(-1)^{k-i}\begin{bmatrix}k\\i\end{bmatrix}\sum\limits_{n=l}^r\sum\limits_{j=0}^i\dbinom{i}{j}(ax^n)^j(by^n)^{i-j}$$

$$\dfrac{1}{k!}\sum\limits_{i=0}^k(-1)^{k-i}\begin{bmatrix}k\\i\end{bmatrix}\sum\limits_{n=l}^r\sum\limits_{j=0}^i\dbinom{i}{j}(a^jb^{i-j})(x^jy^{i-j})^n$$

$$\dfrac{1}{k!}\sum\limits_{i=0}^k(-1)^{k-i}\begin{bmatrix}k\\i\end{bmatrix}\sum\limits_{j=0}^i\dbinom{i}{j}(a^jb^{i-j})\sum\limits_{n=l}^r(x^jy^{i-j})^n$$

此时 $i$ 和 $j$ 可以 $O(k^2)$ 枚举,而 $n$ 那里是个等差数列,总复杂度 $O(k^2\log r)$。(可能要预处理出所有斯特林数和组合数才能做到这个复杂度)

但是有个严重的问题:$\sqrt{5}$ 在模 $10^9+7$ 意义下不存在。

那么就要用到一个骚操作:扩系。

令 $(a,b)=a+b\sqrt{5}$,那么上文中的四个常数 $a=(0,5^{-1}),b=(0,-5^{-1}),x=(2^{-1},2^{-1}),y=(2^{-1},-2^{-1})$。

那么进行加减乘除就简单了:

$$(a,b)\pm(c,d)=(a\pm c,b\pm d)$$

$$(a,b)\times(c,d)=(ac+5bd,ad+bc)$$

$$\dfrac{1}{(a,b)}=(\dfrac{a}{a^2-5b^2},\dfrac{-b}{a^2-5b^2})$$

因为式子没推错(只能这么想了啊),最后求出的一定是整数。

那么就做完了。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=,mod=,inv2=,inv5=;
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline ll read(){
char ch=getchar();ll x=,f=;
while(ch<'' || ch>'') f|=ch=='-',ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return f?-x:x;
}
int k,fac[maxn],invfac[maxn],ans,S[maxn][maxn],C[maxn][maxn];
ll l,r;
inline int add(int x,int y){return x+y<mod?x+y:x+y-mod;}
inline int sub(int x,int y){return x<y?x-y+mod:x-y;}
inline int mul(int x,int y){return 1ll*x*y%mod;}
inline int qpow(int a,ll b){
int ans=;
for(;b;b>>=,a=mul(a,a)) if(b&) ans=mul(ans,a);
return ans;
}
struct comp{
int x,y;
comp(const int xx=,const int yy=):x(xx),y(yy){}
inline comp operator+(const comp &c)const{return comp(add(x,c.x),add(y,c.y));}
inline comp operator-(const comp &c)const{return comp(sub(x,c.x),sub(y,c.y));}
inline comp operator*(const comp &c)const{return comp(add(mul(x,c.x),mul(,mul(y,c.y))),add(mul(x,c.y),mul(y,c.x)));}
inline comp inv()const{
comp ans(x,y?mod-y:);
int dn=qpow(sub(mul(x,x),mul(,mul(y,y))),mod-);
return ans*dn;
}
inline comp operator/(const comp &c)const{return *this*c.inv();}
inline bool operator==(const comp &c)const{return x==c.x && y==c.y;}
}a(,inv5),b(,mod-inv5),x(inv2,inv2),y(inv2,mod-inv2);
inline comp cqpow(comp a,ll b){
comp ans(,);
for(;b;b>>=,a=a*a) if(b&) ans=ans*a;
return ans;
}
comp calc(comp x,ll l,ll r){
if(x==) return (r-l+)%mod;
return (cqpow(x,r+)-cqpow(x,l))/(x-);
}
int main(){
k=read();l=read();r=read();
FOR(i,,k) C[i][]=C[i][i]=;
FOR(i,,k) FOR(j,,i-) C[i][j]=add(C[i-][j],C[i-][j-]);
S[][]=;
FOR(i,,k) FOR(j,,i) S[i][j]=add(mul(i-,S[i-][j]),S[i-][j-]);
fac[]=;
FOR(i,,k) fac[i]=mul(fac[i-],i);
invfac[k]=qpow(fac[k],mod-);
FOR(i,,k){
int s=;
FOR(j,,i){
comp tmp1=cqpow(a,j)*cqpow(b,i-j),tmp2=cqpow(x,j)*cqpow(y,i-j);
s=add(s,mul(C[i][j],(tmp1*calc(tmp2,l+,r+)).x));
}
s=mul(s,S[k][i]);
if((k-i)&) ans=sub(ans,s);
else ans=add(ans,s);
}
printf("%d\n",mul(ans,invfac[k]));
}

CF717A Festival Organization(第一类斯特林数,斐波那契数列)的更多相关文章

  1. codeforce 227E 矩阵快速幂求斐波那契+N个连续数求最大公约数+斐波那契数列的性质

    E. Anniversary time limit per test2 seconds memory limit per test256 megabytes inputstandard input o ...

  2. 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)

    对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...

  3. 剑指Offer面试题:8.斐波那契数列

    一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时 ...

  4. ACM2 斐波那契数列

    描述 在数学上,斐波那契数列(Fibonacci Sequence),是以递归的方法来定义: F0 = 0 F1 = 1 Fn = Fn - 1 + Fn - 2 用文字来说,就是斐波那契数列由0和1 ...

  5. 关于斐波拉契数列(Fibonacci)

    斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10 ...

  6. [NOIP1997] P2626 斐波那契数列(升级版)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...

  7. hdu 2044:一只小蜜蜂...(水题,斐波那契数列)

    一只小蜜蜂... Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s): Accepte ...

  8. 【Java】斐波那契数列(Fibonacci Sequence、兔子数列)的3种计算方法(递归实现、递归值缓存实现、循环实现、尾递归实现)

    斐波那契数列:0.1.1.2.3.5.8.13………… 他的规律是,第一项是0,第二项是1,第三项开始(含第三项)等于前两项之和. > 递归实现 看到这个规则,第一个想起当然是递归算法去实现了, ...

  9. Python(迭代器 生成器 装饰器 递归 斐波那契数列)

    1.迭代器 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退.另外,迭代器的一大优 ...

随机推荐

  1. HBase的java操作,最新API。(查询指定行、列、插入数据等)

    关于HBase环境搭建和HBase的原理架构,请见笔者相关博客. 1.HBase对java有着较优秀的支持,本文将介绍如何使用java操作Hbase. 首先是pom依赖: <dependency ...

  2. oracle聚合函数XMLAGG用法简介

    XMLAGG函数语法基本如图,可以用于列转行,列转行函数在oracle里有好几种方法,wm_concat也可以做 这里介绍wm_concat是因为XMLAGG实现效果和wm_concat是一样的,只是 ...

  3. 【译】.NET Core 是 .NET 的未来

    为什么要翻译咧,.NET 5 都宣布在 .NET Core 之后发布咯,何不再给 .NET Core 打打鸡血,我这个 .NET Core 的死忠粉. 原文:<.NET Core is the ...

  4. kubernetes 之一些报错

    1.kubelet与docker的Cgroup Driver不一致导致的报错 7月 :: kubeadm-master kubelet[]: W0701 :: watcher.go:] Error w ...

  5. 聊聊springboot2的embeded container的配置改动

    本文主要研究下springboot2的embeded container的配置改动 springboot 1.x import org.apache.catalina.connector.Connec ...

  6. MySQL分析数据运行状态利器【show full processlist】

    原文地址:https://www.cnblogs.com/shihuc/p/8733460.html 今天的主角是: SHOW [FULL] PROCESSLIST show full process ...

  7. 从VisualStudio资源文件看.NET资源处理

    c# 工程里面,经常会添加资源文件. 作用: 一处文本多个地方的UI使用,最好把文本抽成资源,多处调用使用一处资源. 多语言版本支持,一份代码支持多国语言.配置多国语言的资源文件,调用处引用资源. 例 ...

  8. 教你使用 Swoole-Tracker 秒级定位 PHP 卡死问题

    PHPer 肯定收到过这样的投诉:小菊花一直在转!你们网站怎么这么卡!当我们线上业务遇到这种卡住(阻塞)的情况,大部分 PHPer 会两眼一抹黑,随后想起那句名言:性能瓶颈都在数据库然后把锅甩给DBA ...

  9. windows7系统 执行应用程序报 Error accessing specified device (Error: 2)

    --------------------------- ---------------------------Error accessing specified device (Error: 2) - ...

  10. android studio学习----常用快捷键

    Action Mac OSX Win/Linux 注释代码(//) Cmd + / Ctrl + / 注释代码(/**/) Cmd + Option + / Ctrl + Shift + / 格式化代 ...