#include <set>
#include <iostream>
#include <string>
#include <vector>
#include <cmath>
using namespace std; int X[];
int c=;
bool place(int k)
{
int i;
for (i=;i<k;i++)
{
if (X[i]==X[k]||abs(X[i]-X[k])==abs(i-k))
{
return false;
}
}
return true;
}
void printSol(int n)
{
int i;
for (i=;i<n;i++)
{
cout<<X[i]+<<" ";
}
cout<<endl;
c++;
}
void NQueens(int n)
{
int k=;
X[]=-;
while (k>=)
{
X[k]++;
while (X[k]<&&place(k)==false)
{
X[k]++;
}
if (X[k]<n)
{
if (k==n-)
{
printSol(n);
}
else
{
k++;
X[k]=-;
}
}
else
{
k--;
} }
}
int main()
{
NQueens();
cout<<c<<endl;
}

N 皇后问题的更多相关文章

  1. 递归实现n(经典的8皇后问题)皇后的问题

    问题描述:八皇后问题是一个以国际象棋为背景的问题:如何能够在8×8的国际象棋棋盘上放置八个皇后, 使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行.纵行或斜线上 ...

  2. 八皇后算法的另一种实现(c#版本)

    八皇后: 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于 ...

  3. [LeetCode] N-Queens II N皇后问题之二

    Follow up for N-Queens problem. Now, instead outputting board configurations, return the total numbe ...

  4. [LeetCode] N-Queens N皇后问题

    The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens ...

  5. N皇后问题—初级回溯

    N皇后问题,最基础的回溯问题之一,题意简单N*N的正方形格子上放置N个皇后,任意两个皇后不能出现在同一条直线或者斜线上,求不同N对应的解. 提要:N>13时,数量庞大,初级回溯只能保证在N< ...

  6. 数据结构0103汉诺塔&八皇后

    主要是从汉诺塔及八皇后问题体会递归算法. 汉诺塔: #include <stdio.h> void move(int n, char x,char y, char z){ if(1==n) ...

  7. N皇后问题

    题目描述 在n×n格的棋盘上放置彼此不受攻击的n个皇后.按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子.n后问题等价于再n×n的棋盘上放置n个后,任何2个皇后不妨在同一行或同 ...

  8. LeetCode:N-Queens I II(n皇后问题)

    N-Queens The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no tw ...

  9. 八皇后问题_Qt_界面程序实现

    //核心代码如下 //Queen--放置皇后 #include "queue.h" queue::queue() { *; ; this->board = new bool[ ...

  10. 两个NOI题目的启迪8皇后和算24

    论出于什么原因和目的,学习C++已经有一个星期左右,从开始就在做NOI的题目,到现在也没有正式的看<Primer C++>,不过还是受益良多,毕竟C++是一种”低级的高级语言“,而且NOI ...

随机推荐

  1. Uva 10891 经典博弈区间DP

    经典博弈区间DP 题目链接:https://uva.onlinejudge.org/external/108/p10891.pdf 题意: 给定n个数字,A和B可以从这串数字的两端任意选数字,一次只能 ...

  2. React Native for Android 学习笔记

    C:\Users\Vic Lee\AwesomeProject>react-native run-android Starting JS server... Running D:\Android ...

  3. jquery.validate 使用--验证表单隐藏域

    jQuery validate很不错的一个jQuery表单验证插件.升级到了1.9版的后,发现隐藏表单域验证全部失效,特别是在jquery.ui.tabs.min.js构造的Tabs里的验证. 是因为 ...

  4. Signlar

    后台内部发送到指定客户端 Microsoft.AspNet.SignalR.GlobalHost.ConnectionManager.GetHubContext<tvHub>().Clie ...

  5. FUNCTION

    1,FUNCTION-1 CREATE FUNCTION `vendor_area_child_ids`(rootId INT) ) BEGIN ); ); SET pTemp = '$'; SET ...

  6. 这是一个比较全的Android UI 组件

     Android组件及UI框架大全 原文地址:http://blog.csdn.net/smallnest/article/details/38658593 Android 是目前最流行的移动操作系统 ...

  7. nslookup

    检查DNS http://arch.pconline.com.cn//pcedu/soft/wl/assist/10307/193330.html

  8. 最新榜单!消金企业TOP10,数据、风控、催收服务方TOP5

    最新榜单!消金企业TOP10,数据.风控.催收服务方TOP5 布谷TIME2016-12-15 17:47:59消费 风控阅读(164)评论(0) 声明:本文由入驻搜狐公众平台的作者撰写,除搜狐官方账 ...

  9. PPP协议

    PPP协议PPP协议是二层(数据链路层)协议,常用于拨号上网时客户端向服务器获取IP地址.PPP支持在各种物理类型的点对点串行线路上传输上层协议报文.它具有很多特性,比如支持多协议.提供可选的身份认证 ...

  10. dos2unix 命令

    最近在学习shell编程,可是在<Linux程序设计>指定的网站上下载了源码,使用的时候却一直出问题.提示:"bash: ./here1:/bin/sh^M:损坏的解释器: 没有 ...