Minimizing maximizer(POJ 1769)
- 原题如下:
Minimizing maximizer
Time Limit: 5000MS Memory Limit: 30000K Total Submissions: 5104 Accepted: 2066 Description
The company Chris Ltd. is preparing a new sorting hardware called Maximizer. Maximizer has n inputs numbered from 1 to n. Each input represents one integer. Maximizer has one output which represents the maximum value present on Maximizer's inputs.Maximizer is implemented as a pipeline of sorters Sorter(i1, j1), ... , Sorter(ik, jk). Each sorter has n inputs and n outputs. Sorter(i, j) sorts values on inputs i, i+1,... , j in non-decreasing order and lets the other inputs pass through unchanged. The n-th output of the last sorter is the output of the Maximizer.
An intern (a former ACM contestant) observed that some sorters could be excluded from the pipeline and Maximizer would still produce the correct result. What is the length of the shortest subsequence of the given sequence of sorters in the pipeline still producing correct results for all possible combinations of input values?
Task
Write a program that:reads a description of a Maximizer, i.e. the initial sequence of sorters in the pipeline,
computes the length of the shortest subsequence of the initial sequence of sorters still producing correct results for all possible input data,
writes the result.Input
The first line of the input contains two integers n and m (2 <= n <= 50000, 1 <= m <= 500000) separated by a single space. Integer n is the number of inputs and integer m is the number of sorters in the pipeline. The initial sequence of sorters is described in the next m lines. The k-th of these lines contains the parameters of the k-th sorter: two integers ik and jk (1 <= ik < jk <= n) separated by a single space.Output
The output consists of only one line containing an integer equal to the length of the shortest subsequence of the initial sequence of sorters still producing correct results for all possible data.Sample Input
40 6
20 30
1 10
10 20
20 30
15 25
30 40Sample Output
4
Hint
Huge input data, scanf is recommended. - 题解:首先,考虑在什么情况下可以正常工作,假设输入的第i个数是应该输出的最大值,此时在第一个满足sk≤i≤tk的Sorter的输出中,这个值被移动到了第tk个位置,接下去,在一个满足sk'≤tk≤tk'且k'>k的Sorter的输出中,这个值又被移动到了第tk'个。不断重复这样的操作,如果最后可以被移动到第n个,那么就表示Maximizer可以正常工作(实际上,就是要按照线段的输入顺序,将[1, n]从左到右依次覆盖,求所需线段个数的最小值)。因此只要i=1的情况可以正常工作,那么对于任意的i都可以正常工作。不妨假设第一个数是应该输出的最大值,考虑DP:
dp[i][j]:=到第i个Sorter为止,最大值被移动到第j个位置所需要的最短的子序列的长度(INF表示不存在这样的序列)
dp[0][1]=0
dp[0][j]=INF(j>1)
dp[i+1][j]=①dp[i][j] (ti ≠ j)
②min( dp[i][j] , min{dp[i][j']|si≤j'≤ti}+1 ) (ti = j)
由于这个DP的复杂度是O(nm)的,仍然无法在规定的时间内求出答案。但是对于(ti ≠ j)时有dp[i+1][j]=dp[i][j],我们可以使用同一个数组不断对自己更新:
dp[j]:=最大值被移动到第j个位置所需要的最短的子序列的长度。(INF表示不存在这样的序列)
初始化:
dp[1]=0
dp[j]=INF(j>1)
对于每个i,这样更新:
dp[ti]=min( dp[ti], min{dp[j']|si≤j'≤ti}+1 )
这样,对于每个i都只需更新一个值就可以了,但求最小值时,最坏情况下要O(n)的时间,最后复杂度还是O(nm)。如果使用线段树来维护,就可以在O(mlogn)时间内求解了。 - 代码:
#include <cstdio>
#include <cctype>
#include <algorithm>
#define number s-'0' using namespace std; const int INF=0x3f3f3f3f;
const int MAX_N=;
const int MAX_M=;
int n,m;
int s[MAX_M], t[MAX_M];
int dp[MAX_N+];
int dat[*MAX_N]; void read(int &x)
{
char s;
bool flag=;
x=;
while (!isdigit(s=getchar()))
(s=='-')&&(flag=true);
for (x=number; isdigit(s=getchar());x=x*+number);
(flag)&&(x=-x);
} void write(int x)
{
if (x<)
{
putchar('-');
x=-x;
}
if (x>) write(x/);
putchar(x%+'');
} void rmq_init(int k, int l, int r);
void update(int u, int v, int k, int l, int r);
int query(int a, int b, int k, int l, int r); int min(int x, int y)
{
if (x<y) return x;
return y;
} int main(int argc, char * argv[])
{
read(n);read(m);
for (int i=; i<m; i++)
{
read(s[i]);read(t[i]);
s[i]--;t[i]--;
}
rmq_init(, , n);
fill(dp, dp+MAX_N, INF);
dp[]=;
update(, , , , n);
for (int i=; i<m; i++)
{
int v=min(dp[t[i]], query(s[i], t[i]+, , , n)+);
dp[t[i]]=v;
update(t[i], v, , , n);
}
write(dp[n-]);putchar('\n');
} void rmq_init(int k, int l, int r)
{
dat[k]=INF;
if (r-l==) return;
rmq_init(k*+, l, (l+r)/);
rmq_init(k*+, (l+r)/, r);
} void update(int u, int v, int k, int l, int r)
{
if (r-l==)
{
dat[k]=v;
return;
}
else
{
int m=(l+r)/;
if (u<m) update(u, v, k*+, l, m);
else update(u, v, k*+, m, r);
dat[k]=min(dat[k*+], dat[k*+]);
}
} int query(int a, int b, int k, int l, int r)
{
if (r<=a || b<=l) return INF;
if (a<=l && r<=b) return dat[k];
else
{
int m=(l+r)/;
int vl=query(a, b, k*+, l, m);
int vr=query(a, b, k*+, m, r);
return min(vl, vr);
}
}
Minimizing maximizer(POJ 1769)的更多相关文章
- POJ 1769 Minimizing maximizer(DP+zkw线段树)
[题目链接] http://poj.org/problem?id=1769 [题目大意] 给出一些排序器,能够将区间li到ri进行排序,排序器按一定顺序摆放 问在排序器顺序不变的情况下,一定能够将最大 ...
- poj 1769 Minimizing maximizer 线段树维护dp
题目链接 给出m个区间, 按区间给出的顺序, 求出覆盖$ [1, n] $ 至少需要多少个区间. 如果先给出[10, 20], 在给出[1, 10], 那么相当于[10, 20]这一段没有被覆盖. 令 ...
- POJ.1769.Minimizing maximizer(线段树 DP)
题目链接 /* 题意:有m个区间,问最少要多少个区间能覆盖[1,n] 注:区间要按原区间的顺序,不能用排序贪心做 设dp[i]表示最右端端点为i时的最小值 dp[e[i]]=min{dp[s[i]]~ ...
- POJ 1769 Minimizing maximizer (线段树优化dp)
dp[i = 前i中sorter][j = 将min移动到j位置] = 最短的sorter序列. 对于sorteri只会更新它右边端点r的位置,因此可以把数组改成一维的,dp[r] = min(dp[ ...
- POJ1769 Minimizing maximizer(DP + 线段树)
题目大概就是要,给一个由若干区间[Si,Ti]组成的序列,求最小长度的子序列,使这个子序列覆盖1到n这n个点. dp[i]表示从第0个到第i个区间且使用第i个区间,覆盖1到Ti所需的最少长度 对于Si ...
- uva 1322 Minimizing Maximizer
题意: 有n个数,m个排序器,每个排序器可以把区间ai到bi的数从小到大排序.这m个排序器的输出就是m个排序之后的第n个数. 现在发现有些排序器是多余的.问至少需要多少个排序器可以使得输出不变.排序器 ...
- UVA-1322 Minimizing Maximizer (DP+线段树优化)
题目大意:给一个长度为n的区间,m条线段序列,找出这个序列的一个最短子序列,使得区间完全被覆盖. 题目分析:这道题不难想,定义状态dp(i)表示用前 i 条线段覆盖区间1~第 i 线段的右端点需要的最 ...
- poj1769 Minimizing maximizer
传送门 题目大意 给你m个机器,n个数,每个机器可以给n个数的某一段排序,求最少使用几个机器,保证可以把这个n个数排好序 分析 我们可以想到dpij表示考虑前i个机器让最大的数到达点j至少需要使用多少 ...
- Minimizing Maximizer
题意: 最少需要多少个区间能完全覆盖整个区间[1,n] 分析: dp[i]表示覆盖[1,i]最少需要的区间数,对于区间[a,b],dp[b]=min(dp[a...b-1])+1;用线段树来维护区间最 ...
随机推荐
- 《T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction》 代码解读
论文链接:https://arxiv.org/abs/1811.05320 博客原作者Missouter,博客链接https://www.cnblogs.com/missouter/,欢迎交流. 解读 ...
- 数据库之Oracle优化技巧(二)
1.通过内部函数提高 SQL 效率 复杂的 SQL 往往牺牲了执行效率. 能够掌握上面的运用函数解决问题的方法在实际 工作中是非常有意义的 . 2.使用表的别名(Alias) 当在 SQL 语句中连接 ...
- AVL树旋转
什么是AVL树? AVL树是带有平衡条件的二叉查找树,一颗AVL树首先是二叉查收树(每个节点如果有左子树或右子树,那么左子树中数据小于该节点数据,右子树数据大于该节点数据),其次,AVL树必须满足平衡 ...
- scp 转
linux之cp/scp命令 名称:cp 使用权限:所有使用者 使用方式: cp [options] source dest cp [options] source... directory 说明 ...
- 逆流而上,7月阿里最新出炉的三面面经,年薪50W,我行您也行
从7月份开始,打算找工作,一个偶然的机会,拉勾上一个蚂蚁金服的师兄找到我,说要内推,在此感谢姚师兄,然后就开始了蚂蚁金服的面试之旅.把简历发过去之后,就收到了邮件通知,10个工作日联系我,请耐心等待. ...
- 要点4:C的文件操作
关于文件操作个人比较困惑的地方有两点: 关于w和wb的区别 如何定位文件的读写位置 文件格式和打开模式 c中的文件打开模式分为:文本模式和二进制模式,分别处理文本格式文件和二进制格式文件. 两个模式的 ...
- Shell编程—用户输入
1命令行参数 1.1读取参数 bash shell会将一些称为位置参数(positional parameter)的特殊变量分配给输入到命令行中的所有参数.这也包括shell所执行的脚本名称.位置参数 ...
- Java数据结构——图的基本理论及简单实现
1. 图的定义图(graph)是由一些点(vertex)和这些点之间的连线(edge)所组成的:其中,点通常被成为"顶点(vertex)",而点与点之间的连线则被成为"边 ...
- N皇后问题的二进制优化详细思路
题目啊常规解法(DFS)在此就不赘述了... 直接进入正题. 众所周知,N皇后是NP完全类问题,n稍微大了点求解过程就会变得很长. 算法方面很难再有质的效率突破,但这不妨在其他细节上下下功夫. 揆诸常 ...
- C# 根据出生年月 计算天数/计算X岁X月X天字符串
public class TimeTool { //根据出生年月计算 整数天 private static int GetAgeByBirthdate(DateTime birthdate) { Da ...