扩展欧几里得算法(EXGCD)学习笔记
0.前言
相信大家对于欧几里得算法都已经很熟悉了。再学习数论的过程中,我们会用到扩展欧几里得算法(exgcd),大家一定也了解过。这是本蒟蒻在学习扩展欧几里得算法过程中的思考与探索过程。
1.Bézout定理
扩展欧几里得算法利用归纳法,证明了Bézout定理。
Bézout定理:对于任意整数 \(a\),\(b\) ,存在一对整数 \(x\),\(y\),满足 \(ax+by=gcd(a,b)\)
在扩展欧几里得的算法中,我们求出 \(x\),\(y\) 的值。
2.证明
2.1 \(gcd\)
首先,我们来看一下 \(gcd\) 函数
int gcd (int a, int b) {
if(b == 0) return a;
else return gcd(b, a % b);
}
在第二行,也就是递归终止时,\(b=0\) 且 \(a=gcd(a,b)\)。 我们可以发现存在一对整数 \(x\),\(y\) 满足条件 \(ax+by=gcd(a,b)\)。
将已知的值代入可得:\(ax+b*0=gcd(a,b)\)
∵\(a=gcd(a,b)\)
∴\(gcd(a,b)*x=gcd(a,b)\)
∴\(y\)在终止时可取任意值,\(x=1\)
2.2归纳法
我们在2.1中得到了 \(b=0\) 时的解。现在,我们用归纳法一步步得到最终解。当 \(b>0\) 时,我们假设 \(b*x\) 满足条件 \(b*x+(a\,mod\,b*y)gcd(b,a\,mod\,b)\)(代入的值也正是我们平时进行gcd的转移方程)
\(∵ bx+(a\,mod\,b)y=bx+[a-b(a/b)]y\)
\(∴ bx+(a\,mod\,b)y=bx+ay-by(a/b)\)
\(∴ bx+(a\,mod\,b)y=ay+bx-by(a/b)\)
\(∴ bx+(a\,mod\,b)y=ay+b[x-(a/b)y]\)
令 \(x_1=y\), \(y_1=x-(a\,mod\,b)y\),再代入已得到的式子,就能得到:
\(ax_1+by_1=gcd(a,b)\),所以可以得出Bézout定理成立。
3.代码实现
3.1思路简述
我们的代码在截止条件上与 \(gcd\) 相同,都是 if(b == 0)时停止递归。我们在此基础上再改变 \(x\) 和 \(y\) 的值。
3.2参考代码及注释
大部分都按照前面的推导过程
int exgcd(int a, int b, int &x, int &y) { //x,y的初始值无关
if(b == 0) {
x = 1, y = 0;//改变x,y的值(y可取任意值)
return a;
} else {
int tmp = exgcd(b, a % b, x, y);//保存下一次的最大公约数
int z = x; //存储上一次的x
y = x; //及上文中的y1
x = z - y * (a / b); //及上文中的x_1
return tmp;//返回最大公约数
}
}
扩展欧几里得算法(EXGCD)学习笔记的更多相关文章
- 扩展欧几里得算法(exGCD)学习笔记
@(学习笔记)[扩展欧几里得] 本以为自己学过一次的知识不会那么容易忘记, 但事实证明, 两个星期后的我就已经不会做扩展欧几里得了...所以还是写一下学习笔记吧 问题概述 求解: \[ax + by ...
- 浅谈扩展欧几里得算法(exgcd)
在讲解扩展欧几里得之前我们先回顾下辗转相除法: \(gcd(a,b)=gcd(b,a\%b)\)当a%b==0的时候b即为所求最大公约数 好了切入正题: 简单地来说exgcd函数求解的是\(ax+by ...
- gcd(欧几里得算法)与exgcd(扩展欧几里得算法)
欧几里得算法: 1.定义:gcd的意思是最大公约数,通常用扩展欧几里得算法求 原理:gcd(a, b)=gcd(b, a%b) 2.证明: 令d=gcd(a, b) => a=m*d,b=n ...
- 扩展欧几里得算法详解(exgcd)
一.前言 本博客适合已经学会欧几里得算法的人食用~~~ 二.扩展欧几里得算法 为了更好的理解扩展欧几里得算法,首先你要知道一个叫做贝祖定理的玄学定理: 即如果a.b是整数,那么一定存在整数x.y使得$ ...
- 『扩展欧几里得算法 Extended Euclid』
Euclid算法(gcd) 在学习扩展欧几里得算法之前,当然要复习一下欧几里得算法啦. 众所周知,欧几里得算法又称gcd算法,辗转相除法,可以在\(O(log_2b)\)时间内求解\((a,b)\)( ...
- 详解扩展欧几里得算法(扩展GCD)
浅谈扩展欧几里得(扩展GCD)算法 本篇随笔讲解信息学奥林匹克竞赛中数论部分的扩展欧几里得算法.为了更好的阅读本篇随笔,读者最好拥有不低于初中二年级(这是经过慎重考虑所评定的等级)的数学素养.并且已经 ...
- 欧几里得算法与扩展欧几里得算法_C++
先感谢参考文献:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 注:以下讨论的数均为整数 一.欧几里得算法(重点是证 ...
- vijos1009:扩展欧几里得算法
1009:数论 扩展欧几里得算法 其实自己对扩展欧几里得算法一直很不熟悉...应该是因为之前不太理解的缘故吧这次再次思考,回看了某位大神的推导以及某位大神的模板应该算是有所领悟了 首先根据题意:L1= ...
- exgcd学习笔记
扩展欧几里得算法是当已知a和b时,求得一组x和y使得 首先,根据数论中的相关定理,解一定存在 //留坑待填 之后我们可以推一推式子 将a替换掉 展开括号 提出b,合并 且 设 现在已经将 ...
随机推荐
- spring-cloud-netflix-hystrix-turbine
Hystrix-dashboard是一款针对Hystrix进行实时监控的工具,通过Hystrix Dashboard我们可以在直观地看到各Hystrix Command的请求响应时间, 请求成功率等数 ...
- java8按照lamda表达式去重一个list,根据list中的一个元素
/** * 按照指定字段给list去重 * @param list * @return */ public static List<DataModel> niqueList(List< ...
- Winter Bash & Stack Overflow
Winter Bash & Stack Overflow https://stackoverflow.com/users/5934465/xgqfrms#winter-bash https:/ ...
- Express All In One
Express All In One express.js, node.js web framework # v4.17.1 Latest, on May 26, 2019 $ yarn add ex ...
- Google 灭霸 彩蛋
Google 灭霸 彩蛋 在Google中搜索"灭霸",然后在右侧点击的"无限手套",页面的一些搜索项就会随机性像沙子一样的消失(后面统称沙化效果),特别的炫酷 ...
- DAPHNE PATEL:有主见的人,才能活出精彩人生
有主见的人,会活出什么样子呢?近日,NGK灵石团队技术副总裁DAPHNE 女士给出了答案. DAPHNE PATEL表示,有主见的人,才能活出精彩的人生.为什么这么说呢? DAPHNE PATEL用自 ...
- Win10安装VSCode并配置Python环境 完整版超详细简单【原创】
我们分为三个步骤进行: 一.下载VSCode 二.配置Python环境 三.测试Python 一.下载VSCode 1.打开国内镜像vscode下载地址,即可自动下载:https://vscode.c ...
- 如何用JavaDoc命令生成帮助文档
如何用JavaDoc命令生成帮助文档 文档注释 在代码中使用文档注释的方法 /** *@author *@version * */ 生成帮助文档 打开java文件所在位置,在路径前加入cmd (注意有 ...
- JDBC概念理解
##JDBC: 概念:Java DataBase Connectivity Java 数据库连接 Java语言操作数据库 JDBC本质:其实是官方(sun公司)定义的一套操作所有关系型数据库的规则 ...
- linux系统的认识
当使用其他工具连接linux系统时的常用命令. 连接:ssh 用户名@ip 进入根目录:cd / (一般都是先进入根目录然后才能进入其他文件夹) 进入其他文件夹:cd /home ...