题目

好题啊

我们要求的是

\[C=\frac{\sum_{i=1}^na_i}{\sum_{i=1}^nb_i}
\]

使得\(C\)最大

显然

\[C\times \sum_{i=1}^nb_i=\sum_{i=1}^na_i
\]

这个问题自然不好解决,我们尝试将其转化为一个判定性问题

对于我们二分出来的一个答案\(C\),我们判断是否存在一个更大的\(C\)

如果存在一个更大的\(C\),那么上面的柿子就会变成

\[\sum_{i=1}^nC\times b_i<\sum_{i=1}^na_i
\]

这样的话比值自然就大于\(C\)了

在化一下上面的柿子

\[\sum_{i=1}^na_i-\sum_{i=1}^nC\times b_i>0
\]

\[\sum_{i=1}^na_i-C\times b_i>0
\]

这样的话我们把转移边的边权设成\(a_{i,j}-C\times b_{i,j}\)之后来一遍最大费用最大流就好了,如果费用大于\(0\),那么当前的\(C\)就还能更大

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#define maxn 205
#define eps 1e-8
#define re register
#define LL long long
#define inf 999999999
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read()
{
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
int a[maxn][maxn],b[maxn][maxn];
int num=1,n,S,T;
double d[maxn];
int head[maxn],vis[maxn];
struct E{int v,nxt,f;double w;}e[maxn*maxn];
inline void add(int x,int y,int ca,double z){e[++num].v=y;e[num].nxt=head[x];e[num].f=ca,e[num].w=z;head[x]=num;}
inline void C(int x,int y,int ca,double z){z*=-1.0;add(x,y,ca,z);add(y,x,0,-1.0*z);}
inline int SPFA()
{
std::queue<int> q;
for(re int i=S;i<=T;i++) vis[i]=0,d[i]=inf;
vis[T]=1,d[T]=0,q.push(T);
while(!q.empty())
{
int k=q.front();q.pop();vis[k]=0;
for(re int i=head[k];i;i=e[i].nxt)
if(e[i^1].f&&d[e[i].v]>d[k]+e[i^1].w)
{
d[e[i].v]=d[k]+e[i^1].w;
if(!vis[e[i].v]) vis[e[i].v]=1,q.push(e[i].v);
}
}
return d[S]<inf;
}
int dfs(int x,int now)
{
if(x==T||!now) return now;
int flow=0,ff;vis[x]=1;
for(re int i=head[x];i;i=e[i].nxt)
if(!vis[e[i].v]&&e[i].f&&d[x]+e[i^1].w==d[e[i].v])
{
ff=dfs(e[i].v,min(now,e[i].f));
if(ff<=0) continue;
e[i].f-=ff,e[i^1].f+=ff;
now-=ff,flow+=ff;
if(!now) break;
}
return flow;
}
inline int check(double mid)
{
num=1;
memset(e,0,sizeof(e));
for(re int i=S;i<=T;i++) head[i]=0;
for(re int i=1;i<=n;i++) C(S,i,1,0);
for(re int i=1;i<=n;i++) C(i+n,T,1,0);
for(re int i=1;i<=n;i++)
for(re int j=1;j<=n;j++)
C(i,j+n,1,(double)((double)a[i][j]-(double)b[i][j]*mid));
double ans=0;
while(SPFA())
{
vis[T]=1;
while(vis[T])
{
for(re int i=S;i<=T;i++) vis[i]=0;
int F=dfs(S,inf);
ans-=(double)F*d[S];
}
}
return ans>0;
}
int main()
{
n=read();
for(re int i=1;i<=n;i++)
for(re int j=1;j<=n;j++) a[i][j]=read();
for(re int i=1;i<=n;i++)
for(re int j=1;j<=n;j++) b[i][j]=read();
T=n+n+1;
double l=0,r=1e4;
while(r-l>eps)
{
double mid=(l+r)/2;
if(check(mid)) l=mid;
else r=mid;
}
printf("%.6lf\n",r);
return 0;
}

【[SDOI2017]新生舞会】的更多相关文章

  1. [Sdoi2017]新生舞会 [01分数规划 二分图最大权匹配]

    [Sdoi2017]新生舞会 题意:沙茶01分数规划 貌似\(*10^7\)变成整数更科学 #include <iostream> #include <cstdio> #inc ...

  2. BZOJ_4819_[Sdoi2017]新生舞会_01分数规划+费用流

    BZOJ_4819_[Sdoi2017]新生舞会_01分数规划+费用流 Description 学校组织了一次新生舞会,Cathy作为经验丰富的老学姐,负责为同学们安排舞伴.有n个男生和n个女生参加舞 ...

  3. 洛谷 P3705 [SDOI2017]新生舞会 解题报告

    P3705 [SDOI2017]新生舞会 题目描述 学校组织了一次新生舞会,\(Cathy\)作为经验丰富的老学姐,负责为同学们安排舞伴. 有\(n\)个男生和\(n\)个女生参加舞会买一个男生和一个 ...

  4. 【BZOJ 4819】 4819: [Sdoi2017]新生舞会 (0-1分数规划、二分+KM)

    4819: [Sdoi2017]新生舞会 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 601  Solved: 313 Description 学校 ...

  5. 【BZOJ4819】[Sdoi2017]新生舞会 01分数规划+费用流

    [BZOJ4819][Sdoi2017]新生舞会 Description 学校组织了一次新生舞会,Cathy作为经验丰富的老学姐,负责为同学们安排舞伴.有n个男生和n个女生参加舞会 买一个男生和一个女 ...

  6. [BZOJ4819][SDOI2017]新生舞会(分数规划+费用流,KM)

    4819: [Sdoi2017]新生舞会 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1097  Solved: 566[Submit][Statu ...

  7. 【算法】01分数规划 --- HNOI2009最小圈 & APIO2017商旅 & SDOI2017新生舞会

    01分数规划:通常的问法是:在一张有 \(n\) 个点,\(m\) 条边的有向图中,每一条边均有其价值 \(v\) 与其代价 \(w\):求在图中的一个环使得这个环上所有的路径的权值和与代价和的比率最 ...

  8. 4819: [Sdoi2017]新生舞会(分数规划)

    4819: [Sdoi2017]新生舞会 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1031  Solved: 530[Submit][Statu ...

  9. 题解:SDOI2017 新生舞会

    题解:SDOI2017 新生舞会 Description 学校组织了一次新生舞会,Cathy 作为经验丰富的老学姐,负责为同学们安排舞伴. 有 \(n\) 个男生和 \(n\) 个女生参加舞会.一个男 ...

  10. bzoj4819 [Sdoi2017]新生舞会

    Description 学校组织了一次新生舞会,Cathy作为经验丰富的老学姐,负责为同学们安排舞伴.有n个男生和n个女生参加舞会买一个男生和一个女生一起跳舞,互为舞伴.Cathy收集了这些同学之间的 ...

随机推荐

  1. Web前端常见问题

    一.理论知识 1.1.讲讲输入完网址按下回车,到看到网页这个过程中发生了什么 a. 域名解析 b. 发起TCP的3次握手 c. 建立TCP连接后发起http请求 d. 服务器端响应http请求,浏览器 ...

  2. idea进行断点快捷键

    快捷键 功能描述 F8 单步调试,不进入函数内部 F7 单步调试,进入函数内部 Shift+F7 选择要进入的函数 Shift+F8 跳出函数 Alt+F9 运行到断点 Alt+F8 执行表达式查看结 ...

  3. Robotframework测试相关库

    一. 官网地址 http://robotframework.org/#libraries 二.几类测试所用到的常用库初步整理 1. UI自动化测试 Selenium2Library.BuiltIn(自 ...

  4. 【3dsMax安装失败,如何卸载、安装3dMax 2018?】

    AUTODESK系列软件着实令人头疼,安装失败之后不能完全卸载!!!(比如maya,cad,3dsmax等).有时手动删除注册表重装之后还是会出现各种问题,每个版本的C++Runtime和.NET f ...

  5. H903

    Metadata-Version: 2.0Name: hackingVersion: 0.10.2Summary: OpenStack Hacking Guideline EnforcementHom ...

  6. 牛客网Java刷题知识点之字节流练习之从A处复制文本文件到B处(FileReader、FileWriter )、复制文本文件的原理图解

    不多说,直接上干货! CopyTextTest.java package zhouls.bigdata.DataFeatureSelection.test; import java.io.FileRe ...

  7. keepalived双机热备实现故障时发送邮件通知

    目前项目已经采用nginx来实现负载均衡,但是nginx调度器只有一台,上次还意外的down机一次,导致整个服务应用全部瘫痪,这次准备再加一个调度器来实现站点高可用性,也就是常说的双机热备了. mas ...

  8. apache2.2多域名绑定

    apache2.2多域名绑定不同目录,将代码放在httpd.conf最后 NameVirtualHost *:80 <VirtualHost *:80> ServerName wo.com ...

  9. JEECMS站群管理系统-- 自定义标签及使用自己创建的表的实现过程

    下面是我自己定义的标签mycontent_list 首先,在数据库里创建了一个jc_mycontent的表,其中有id,title,content三个字段 其次,创建了一个实体类 public cla ...

  10. java调用7zip解压压缩包

    前言 最近的项目中需要用到解压缩包的功能,客户给出的压缩包的格式主要是rar和zip,因此就打算使用java调用7zip的命令行进行解压文件,本文主要记录一下实现的过程以及其中遇到的问题. 7zip命 ...