dfs和bfs算法
- 1. 存储图的方式一般是有两种的:邻接表和邻接矩阵,一般存储链接矩阵的方式是比较简单的,也便于我们去实现这个临接矩阵,他也就是通俗的二维数组,我们平常用到的那种。
- 2. 这里我们主要记录和讲一下bfs和dfs算法之间的一些区别和用法,他们的原理一般人是都知道的,但是他们是怎么来实现的我相信一部分人并没有去真正的实现过,包括我也是(惭愧惭愧),本人算法比较渣,所以过来恶补一下。我就先从dfs开始吧。
- 2.1 dfs 深度优先遍历
- 顾名思义:深度优先,就是一直是往深处遍历,直到没有路走为止,再回过头来找到最开始那个没路的位置换一条路再进行上面那个操作,往深处钻。递归的方式比较简单,下面上一下代码,测试通过。
#include<iostream>
#include <stdio.h>
#include <string.h>
#include <windows.h>
#include <fstream>
using namespace std; int array[][];
bool visited[]; void input_graph(){ for (int i = ; i <= ; i++)
for( int j = ; j <= ; j++)
cin>>array[i][j];
} void dfs_graph(){
void dfs(int v);
memset(visited, false, sizeof(visited)); for (int i = ; i <= ; i++)// 遍历每一个节点,主要是为了当图不是连通的时候无法访问所有的节点
if(visited[i] == false)
dfs(i);
} void dfs(int v){
//深度遍历每个节点,记录访问过的节点
int adjx(int x); cout<<"当前访问顶点:"<<v<<endl;
visited[v] = true; int adx = adjx(v);//求临接的顶点 while (adx!=){//这里就递归的进行深度搜索
if(visited[adx] == false)
dfs(adx); adx = adjx(v);
}
} int adjx(int x){//找到当前节点的临节点
for (int i = ; i <= ; i++)
if (array[x][i] == && visited[i] ==false)
return i; return ;
} int main(){
cout<<"初始化图:"<<endl;
input_graph(); cout<<"dfs遍历结果:"<<endl;
dfs_graph(); return ;
}- 我感觉递归的方式还是比较简单的,但是非递归的话比较麻烦,具体可以查看一个这位大哥写的。http://www.cnblogs.com/pengyingh/articles/2396432.html。写的通俗易懂挺好的。
- bfs 广度优先遍历
- 这个就和深度不一样了,他这个就相当于是先遍历当前层的,然后再一层一层的往下面进行遍历,也是递归的方式。
- bfs算法其实就是一种层次遍历算法。从算法描述可以看到该算法要用到队列这一数据结构。我这
里用STL中的<queue>实现。该算法由于不是递归算法,所以程序流程是清晰的。
#include<iostream>
#include<queue>
using namespace std; int a[][];
bool visited[]; void store_graph()
{
for(int i=;i<=;i++)
for(int j=;j<=;j++)
cin>>a[i][j];
} void bfs_graph()
{
void bfs(int v); memset(visited,false,sizeof(visited)); for(int i=;i<=;i++)
if(visited[i]==false)
bfs(i);
} void bfs(int v)
{
int Adj(int x); queue<int> myqueue;
int adj,temp; cout<<v<<" ";
visited[v]=true;
myqueue.push(v); while(!myqueue.empty()) //队列非空表示还有顶点未遍历到
{
temp=myqueue.front(); //获得队列头元素
myqueue.pop(); //头元素出对 adj=Adj(temp);
while(adj!=)
{
if(visited[adj]==false)
{
cout<<adj<<" ";
visited[adj]=true;
myqueue.push(adj); //进对
} adj=Adj(temp);
}
}
} int Adj(int x)
{
for(int i=;i<=;i++)
if(a[x][i]== && visited[i]==false)
return i; return ;
} int main()
{
cout<<"初始化图:"<<endl;
store_graph(); cout<<"bfs遍历结果:"<<endl;
bfs_graph(); return ;
}
- 2.1 dfs 深度优先遍历
dfs和bfs算法的更多相关文章
- 邻接表实现Dijkstra算法以及DFS与BFS算法
//============================================================================ // Name : ListDijkstr ...
- 基本DFS与BFS算法(C++实现)
样图: DFS:深度优先搜索,是一个不断探查和回溯的过程,每探查一步就将该步访问位置为true,接着在该点所有邻接节点中,找出尚未访问过的一个,将其作为下个探查的目标,接着对这个目标进行相同的操作,直 ...
- 图的DFS与BFS遍历
一.图的基本概念 1.邻接点:对于无向图无v1 与v2之间有一条弧,则称v1与v2互为邻接点:对于有向图而言<v1,v2>代表有一条从v1到v2的弧,则称v2为v1的邻接点. 2.度:就是 ...
- 图的遍历算法:DFS、BFS
在图的基本算法中,最初需要接触的就是图的遍历算法,根据访问节点的顺序,可分为深度优先搜索(DFS)和广度优先搜索(BFS). DFS(深度优先搜索)算法 Depth-First-Search 深度优先 ...
- BFS与DFS常考算法整理
BFS与DFS常考算法整理 Preface BFS(Breath-First Search,广度优先搜索)与DFS(Depth-First Search,深度优先搜索)是两种针对树与图数据结构的遍历或 ...
- 【数据结构与算法笔记04】对图搜索策略的一些思考(包括DFS和BFS)
图搜索策略 这里的"图搜索策略"应该怎么理解呢? 首先,是"图搜索",所谓图无非就是由节点和边组成的,那么图搜索也就是将这个图中所有的节点和边都访问一遍. 其次 ...
- 图论中DFS与BFS的区别、用法、详解…
DFS与BFS的区别.用法.详解? 写在最前的三点: 1.所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次. 2.实现bfs和dfs都需要解决的一个问题就是如何存储图.一般有两种方法:邻接矩阵 ...
- 图论中DFS与BFS的区别、用法、详解?
DFS与BFS的区别.用法.详解? 写在最前的三点: 1.所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次. 2.实现bfs和dfs都需要解决的一个问题就是如何存储图.一般有两种方法:邻接矩阵 ...
- BFS算法(——模板习题与总结)
首先需要说明的是BFS算法(广度优先算法)本质上也是枚举思想的一种体现,本身效率不是很高,当数据规模很小的时候还是可以一试的.其次很多人可能有这样的疑问,使用搜索算法的时候,到底选用DFS还是BFS, ...
随机推荐
- UVA - 10934 Dropping water balloons (dp,逆向思维)
题目链接 题目大意:给你n个规格一样的气球和一栋大楼的高度,求最少试验几次能测出气球最高在哪一层掉下来不破. 如果这道题想用(dp[i][j]=用i个气球测出j高度的楼需要几次)来作为状态的话,那你就 ...
- Node中没搞明白require和import,你会被坑的很惨
ES6标准发布后,module成为标准,标准的使用是以export指令导出接口,以import引入模块,但是在我们一贯的node模块中,我们采用的是CommonJS规范,使用require引入模块,使 ...
- Gradle的快速入门
1.基础知识: Gradle提供了:构建项目的框架.但是其中起作用的是Plugin. Gradle在默认情况下提供了很多常用的Plugin.例如:构建Java的Plugin.还有war.Ear等. G ...
- hl7 V2中Message Control ID的含义及应用
HL7 v2中的MSH,MSA段都有Message Control ID. 有几点需要注意: 1.所有的MessageControlID必须唯一 2.对于MSH中的MessageControlID, ...
- ping错误详解
在网络中Ping 是一个十分好用的TCP/IP工具,它主要的功能是用来检测网络的连通情况和分析网络速度. 输入 ping /? 例出ping的参数 使用Ping检查连通性有五个步骤 1. 使用ipco ...
- bae3.0第四步 第一个polls系统
1.创建自己的app 进入新建的blog工程目录,执行其下面的manage.py来创建polls应用,命令为: python manage.py startapp polls2.定义app的model ...
- asp.net自动将页面中的所有空间置为不可用以及将所有文本框置空
/// <summary> /// 遍历页面上所有控件 /// </summary> /// <param name="page">指定的Pag ...
- [转]socket使用TCP协议时,send、recv函数解析以及TCP连接关闭的问题
Tcp协议本身是可靠的,并不等于应用程序用tcp发送数据就一定是可靠的.不管是否阻塞,send发送的大小,并不代表对端recv到多少的数据. 在阻塞模式下, send函数的过程是将应用程序请求发送的数 ...
- 机器学习:线性回归法(Linear Regression)
# 注:使用线性回归算法的前提是,假设数据存在线性关系,如果最后求得的准确度R < 0,则说明很可能数据间不存在任何线性关系(也可能是算法中间出现错误),此时就要检查算法或者考虑使用其它算法: ...
- DDD学习笔录——简介DDD的战略模式如何塑造应用程序的架构
前一篇,简单介绍了DDD战略模式的提炼问题域,这篇简单介绍它如何塑造应用程序的架构. 1.创建一个模型以解决领域问题 为每一个子域构建一个软件模型以处理领域问题并让软件与业务保持一致. 这个模型并非现 ...