题目传送门

题目描述:给你一个p/q,让你求在b进制下,这个小数是不是有限小数。

思路:

先来膜拜一个大神的博客,如何求小数的二进制表达,(感谢博主肘子zhouzi)。然后小数的其他进制表达也一样。

而分数的转化,比如1/6转化成3进制,看图 ↓ 。

其实就是将1/6不断乘以3,然后丢掉整数部分,如果我们不看丢掉整数部分这个环节,就是把1/6不断乘以3看看最后能不能整除就好了,如果有限的话,肯定会得到((b)^n))%q=0,b的某一次幂可以整除q,就代表是有限。(感谢薛佬帮我理解!!)

那么一个朴素的想法,就是,n从1一直加上去,找到一个可以整除的,但问题是 证有不证无,我们无法保证n到几退出循环,所以要改进思路。

其实b^n整除q的过程,其实就是b^n的因子和q的因子不断约分的过程,如果约分到最后,q还剩下一个b中没有的因数,则说明无法整除。  那就是每一次都用q除去gcd(q,b),这样消耗q消耗到最后,判断得到的数是不是1,是1则代表可以整除,不是1则代表  用b没法约分q了,不能整除。思路就是这样

但代码中有不少细节要注意。

#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<bitset>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#define INF 0x3f3f3f3f
#define CLR(x,y) memset(x,y,sizeof(x))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b)
{
if(a%b==0)return b;
else return gcd(b,a%b);
} //辗转相除法求两个数的最大公因数
int main()
{
int n;
cin>>n;
while(n--)
{
ll p,q,b;
//cin>>p>>q>>b; 超时
scanf("%I64d%I64d%I64d",&p,&q,&b); //cf读入longlong类型只能用 I64%
if(p==0)
{
printf("Finite\n");
}else
{
q/=gcd(p,q);//约分
ll g;
while(g=gcd(q,b),g!=1)
{
while(q%g==0)//由于可能出现q=10000000000 g=2的情况 这样子多次调用gcd会浪费时间 所以在这里优化一下
q=q/g;
}
if(q==1){ // q最后如果为 1 则用若干个b把q消耗掉了 即b的若干次方 可以整除 q
printf("Finite\n");
}else{
printf("Infinite\n");
}
}
}
}
C. Finite or not?
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given several queries. Each query consists of three integers pp, qq and bb. You need to answer whether the result of p/qp/q in notation with base bb is a finite fraction.

A fraction in notation with base bb is finite if it contains finite number of numerals after the decimal point. It is also possible that a fraction has zero numerals after the decimal point.

Input

The first line contains a single integer nn (1≤n≤1051≤n≤105) — the number of queries.

Next nn lines contain queries, one per line. Each line contains three integers pp, qq, and bb (0≤p≤10180≤p≤1018, 1≤q≤10181≤q≤1018, 2≤b≤10182≤b≤1018). All numbers are given in notation with base 1010.

Output

For each question, in a separate line, print Finite if the fraction is finite and Infinite otherwise.

Examples
input
Copy
2
6 12 10
4 3 10
output
Copy
Finite
Infinite
input
Copy
4
1 1 2
9 36 2
4 12 3
3 5 4
output
Copy
Finite
Finite
Finite
Infinite
Note

612=12=0,510612=12=0,510

43=1,(3)1043=1,(3)10

936=14=0,012936=14=0,012

412=13=0,13

CodeForces - 984C——Finite or not?分数整除问题(数论,gcd)的更多相关文章

  1. CodeForces 984C Finite or not?

    http://codeforces.com/problemset/problem/984/C Time limit    1000 msMemory limit    262144 kB 题目 You ...

  2. codeforces 983A Finite or not?

    题意: 判断一个分数在某一进制下是否为无限小数. 思路: 首先把这个分数约分,然后便是判断. 首先,一个分数是否为无限小数,与分子是无关的,只与分母有关. 然后,再来看看10进制的分数,可化为有限小数 ...

  3. CF 984C Finite or not? (数论)

    CF 984C Finite or not? (数论) 给定T(T<=1e5)组数据,每组数据给出十进制表示下的整数p,q,b,求问p/q在b进制意义下是否是有限小数. 首先我们先把p/q约分一 ...

  4. CF984 C. Finite or not?【数论/GCD】

    [链接]:CF [题意]:n组样例,对于每组样例,给你三个数p q b,问你p/q在b进制下是不是一个有限小数,是的话输出Finite,否则输出Infinite. [分析]:b的过程是对q约分,那么只 ...

  5. Codeforces Round #276 (Div. 2)A. Factory(数论)

    这道题可以暴力的一直按要求的方法去做,做1000000次还不能整除m就认为永远不能整除m了(m不超过100000,循环1000000次比较安全了已经).这种方法可以AC. 下面深入的分析一下到底循环多 ...

  6. Codeforces - 1114C - Trailing Loves (or L'oeufs?) - 简单数论

    https://codeforces.com/contest/1114/problem/C 很有趣的一道数论,很明显是要求能组成多少个基数. 可以分解质因数,然后统计各个质因数的个数. 比如8以内,有 ...

  7. Codeforces Round #554 (Div. 2) C.Neko does Maths (gcd的运用)

    题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给定两个正整数a,b,其中(1<=a,b<=1e9),求一个正整数k(0&l ...

  8. CodeForces 689C Mike and Chocolate Thieves (二分+数论)

    Mike and Chocolate Thieves 题目链接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/G Description ...

  9. Codeforces 475D CGCDSSQ 求序列中连续数字的GCD=K的对数

    题目链接:点击打开链接 #include <cstdio> #include <cstring> #include <algorithm> #include < ...

随机推荐

  1. css水平居中(一)

    第一种方法:使用text-align属性. 看到一篇博客,也不知道是不是我理解的问题,博客上说text-align可以是内联元素水平居中,我感觉这样的说法是不是有些不准确. text-align属性规 ...

  2. C++知识点总结(四)——面向对象的编程细节总结

    1.空类的默认函数 一般情况下,对于任意一个类A,如果程序员不显示的声明和定义上述函数,C++编译器将会自动的为A产生4个public inline(公有.内联)的默认函数,这4个函数最常见的形式为: ...

  3. VS2010 rdlc报表无法显示“数据源”选项

  4. android viewpage解决嵌套

    子viewpage 自定义 写法一: public class ChildViewPager extends ViewPager{ /** 触摸时按下的点 **/ PointF downP = new ...

  5. java如何从cmd运行并使用text文件作为输入源的总结

    大家好,好几天没写东西了,又和大家见面了 首先,编译我们的.java文件,生成.class文件 使用命令 javac yourname.java 编译 然后使用java youname < yo ...

  6. css知多少(9)——float下篇(转)

    css知多少(9)——float下篇   float内容比较多,咱们分上.下两篇来介绍,上篇已经写完,这是下篇.建议大家先把上篇看了,再来看下文,精彩内容不要掠过啊. 1. 清除float <上 ...

  7. (转载)Eclipse报错:java.lang.ClassNotFoundException: ContextLoaderListener

    转载自:http://www.cnblogs.com/love540376/p/5527757.html Eclipse中tomcat部署工程启动后报错: 严重: Error configuring  ...

  8. C#调用C++类库的几种方式

    1.  直接调用C++类库中的公共方法 使用DllImport特性对方法进行调用,比如一个C++类库SampleCppWrapper.dll中的公共方法: extern "C" _ ...

  9. SDUT 3403 数据结构实验之排序六:希尔排序

    数据结构实验之排序六:希尔排序 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 我们已经学习 ...

  10. 浅谈android代码保护技术_ 加固

    浅谈android代码保护技术_加固 导语 我们知道Android中的反编译工作越来越让人操作熟练,我们辛苦的开发出一个apk,结果被人反编译了,那心情真心不舒服.虽然我们混淆,做到native层,但 ...