1766 树上的最远点对

n个点被n-1条边连接成了一颗树,给出ab和cd两个区间,表示点的标号请你求出两个区间内各选一点之间的最大距离,即你需要求出max{dis(i,j) |a<=i<=b,c<=j<=d}

(PS 建议使用读入优化)

输入

第一行一个数字 n n<=100000。

第二行到第n行每行三个数字描述路的情况, x,y,z (1<=x,y<=n,1<=z<=10000)表示x和y之间有一条长度为z的路。

第n+1行一个数字m,表示询问次数 m<=100000。

接下来m行,每行四个数a,b,c,d。

输出

共m行,表示每次询问的最远距离

输入样例

5

1 2 1

2 3 2

1 4 3

4 5 4

1

2 3 4 5

输出样例

10

题解

对于这个问题,我们不负责任的猜想一个性质。

对于l<k<r,编号在(l,r)之间的最远点对一定是编号在(l,k)的最远点对(a,b)和编号(k+1,r)的最远点对(c,d)四个端点组合成的六组点对:

(a,b)或(a,c)或(a,d)或(b,c)或(b,d)或(c,d)。

上述性质可以通过画图体会。

给一个不能再丑的图。

(画师:业界著名算法选手Claris)



S和T是直径 x是另一个点 如果另一棵树的某个点 在S那个区域 那么因为a<=b 所以它走T就好了 然后这个点在T区域也是同理的 如果那个点是一号点 或者二号点也是同理 如果在3就可以走到S……然后这个过程是可以用线段树合并维护下的。

那么区间之间的最远点对就可以由两个它的子区间合并得到,可以使用线段树来维护O(nlogn)预处理,O(1)查询。

所以我们可以求出编号(a,b)之间的最远点对,编号(c,d)之间的最远点对,然后相互计算下距离即可。总复杂度O(nlogn)

这题除了结论有点意思(并且这官方题解里面也没哟证明!)之外,就没有什么意思了。

线段树+ST表.

树上最长链可以合并,只需要合并两个区间最长链的两个端点即可.

ST表要预处理好 log ,用了cmath 的 log2() ,T的飞起.

这样复杂度就是 O(nlogn)

#include<cstdio>
#include<cmath>
#include<cstring>
#include<utility>
#include<vector>
#include<iostream>
using namespace std; #define debug(a) cout<<#a<<"="<<a<<" "
#define mpr make_pair
typedef pair< int,int > pr;
typedef long long LL;
const int N = 100050;
const int M = 25; int n,m,cnt;
vector< pr > g[N];
int pow2[M],lg2[N<<1],dfs[N<<1],d[N],val[N],pos[N];
int f[N<<1][M]; inline int in(int x=0,char ch=getchar()){ while(ch>'9' || ch<'0') ch=getchar();
while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x; }
void DFS(int u,int fa,int dep,int value){
dfs[++m]=u,d[u]=dep,val[u]=value,pos[u]=m,f[m][0]=u;
for(int i=0,v,lim=g[u].size();i<lim;i++) if((v=g[u][i].first)!=fa) DFS(v,u,dep+1,value+g[u][i].second),dfs[++m]=u,f[m][0]=u;
}
void init(){
pow2[0]=1;for(int i=1;i<M;i++) pow2[i]=pow2[i-1]<<1;
lg2[0]=-1;for(int i=1;i<=m;i++) lg2[i]=lg2[i>>1]+1;
for(int j=1;j<M;j++) for(int i=1;i<=m;i++) if(i+pow2[j]-1<=m){
int u=f[i][j-1],v=f[i+pow2[j-1]][j-1];
if(d[u]<d[v]) f[i][j]=u;else f[i][j]=v;
}
}
int Dis(int u,int v,int lca=0){
if(pos[u]<pos[v]) swap(u,v);int lg=lg2[pos[u]-pos[v]+1];
if(d[f[pos[v]][lg]]<d[f[pos[u]-pow2[lg]+1][lg]]) lca=f[pos[v]][lg];else lca=f[pos[u]-pow2[lg]+1][lg];
return (LL)val[u]+val[v]-2*val[lca];
}
struct SegmentTree{
#define lc (o<<1)
#define rc (o<<1|1)
#define mid ((l+r)>>1)
#define Gd(u) Dis(u.first,u.second)
pr g[N<<2];int d[N<<2];
pr PushUp(pr u,pr v,int d1=0,int d2=0,int o=0){
if(!d1 && !d2) d1=Gd(u),d2=Gd(v);
pr res=d1>d2?u:v;int dd=max(d1,d2);
if(Dis(u.first,v.first)>dd) res=mpr(u.first,v.first),dd=Gd(res);
if(Dis(u.first,v.second)>dd) res=mpr(u.first,v.second),dd=Gd(res);
if(Dis(u.second,v.first)>dd) res=mpr(u.second,v.first),dd=Gd(res);
if(Dis(u.second,v.second)>dd) res=mpr(u.second,v.second),dd=Gd(res);
if(o) d[o]=dd;return res;
}
void Build(int o,int l,int r){
if(l==r){ g[o]=mpr(l,l),d[o]=0;return; }
Build(lc,l,mid);Build(rc,mid+1,r);
g[o]=PushUp(g[lc],g[rc],d[lc],d[rc],o);
}
pr Query(int o,int l,int r,int L,int R){
if(L<=l && r<=R) return g[o];
pr res=mpr(L,L);
if(L<=mid) res=Query(lc,l,mid,L,R);
if(R>mid) res=PushUp(res,Query(rc,mid+1,r,L,R));
return res;
}
pr Merge(pr u,pr v){
pr res=mpr(u.first,v.first);int d=Gd(res);
if(Dis(u.first,v.second)>d) res=mpr(u.first,v.second),d=Gd(res);
if(Dis(u.second,v.first)>d) res=mpr(u.second,v.first),d=Gd(res);
if(Dis(u.second,v.second)>d) res=mpr(u.second,v.second),d=Gd(res);
return res;
}
int Query(int a,int b,int c,int d){
pr r1=Query(1,1,n,a,b),r2=Query(1,1,n,c,d),r3=Merge(r1,r2);
return Gd(r3);
}
#undef lc
#undef rc
#undef mid
#undef Gd
}seg;
int main(){
n=in();memset(d,0x3f,sizeof(d));
for(int i=1,u,v,w;i<n;i++) u=in(),v=in(),w=in(),g[u].push_back(mpr(v,w)),g[v].push_back(mpr(u,w));
DFS(1,1,1,0),init(),seg.Build(1,1,n);
for(int k=in(),a,b,c,d;k--;){
a=in(),b=in(),c=in(),d=in();
printf("%d\n",seg.Query(a,b,c,d));
}return 0;
}

51Nod1766 树上的最远点对的更多相关文章

  1. 51Nod1766 树上的最远点对 ST表 LCA 线段树

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1766.html 题目传送门 - 51Nod1766 题意 n个点被n-1条边连接成了一颗树,给出a~ ...

  2. 【做题】51Nod1766树上的最远点对——直径&线段树

    原文链接 https://www.cnblogs.com/cly-none/p/9890837.html 题意:给出一棵大小为\(n\)的树,边有边权.\(m\)次询问,每次给出两个标号区间\([a, ...

  3. 51 nod 1766 树上的最远点对(线段树+lca)

    1766 树上的最远点对 基准时间限制:3 秒 空间限制:524288 KB 分值: 80 难度:5级算法题   n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个 ...

  4. 51nod 1766 树上的最远点对 | LCA ST表 线段树 树的直径

    51nod 1766 树上的最远点对 | LCA ST表 线段树 树的直径 题面 n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个区间内各选一点之间的最大距离,即 ...

  5. [51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树)

    [51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树) 题面 给出一棵N个点的树,Q次询问一点编号在区间[l1,r1]内,另一点编号在区间[l2,r2]内的所有点对距离最大值.\ ...

  6. 【51NOD1766】树上的最远点对(线段树,LCA,RMQ)

    题意:n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间, 表示点的标号请你求出两个区间内各选一点之间的最大距离,即你需要求出max{dis(i,j) |a<=i<=b,c< ...

  7. 【51nod】1766 树上的最远点对

    [题意]给定n个点的树,m次求[a,b]和[c,d]中各选出一个点的最大距离.abcd是标号区间,n,m<=10^5 [算法]LCA+树的直径理论+线段树 [题解] 树的直径性质:距离树上任意点 ...

  8. 51Nod 1766 树上的最远点对

    Description 一棵树,询问两个端点编号分别在在 \([a,b]\) 和 \([c,d]\) 两个区间中的最长链. Sol 线段树+ST表. 树上最长链可以合并,只需要合并两个区间最长链的两个 ...

  9. 51nod 1766 树上的最远点对——线段树

    n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个区间内各选一点之间的最大距离,即你需要求出max{dis(i,j) |a<=i<=b,c<=j& ...

随机推荐

  1. java.time.ZonedDateTime

    Java的日期与时间 ZonedDateTime类是Java 8中日期时间功能里,用于表示带时区的日期与时间信息的类.可以用于表示一个真实事件的开始时间,如某火箭升空时间等等. ZonedDateTi ...

  2. restful规范和restframework框架

    什么是接口? 接口可以理解为url就是接口. 那么在其他语言里面接口也可以是约束类 restful规范是什么? RESTful是目前最流行的一种互联网软件架构.它结构清晰.符合标准.易于理解.扩展方便 ...

  3. win7 32位下载安装redis并安装php_redis扩展

    redis打包文件下载地址:http://files.cnblogs.com/files/cuiwenyuan/Redis-3.2.100-Windows-32.zip php_redis.dll下载 ...

  4. 我的Android进阶之旅------>如何获取Android控件的宽和高

    本文转载于:http://blog.csdn.net/johnny901114/article/details/7839512 我们都知道在onCreate()里面获取控件的高度是0,这是为什么呢?我 ...

  5. linux 10 -Bash Shell编程

    二十三. Bash Shell编程:     1.  读取用户变量:     read命令是用于从终端或者文件中读取输入的内建命令,read命令读取整行输入,每行末尾的换行符不被读入.在read命令后 ...

  6. 微信小程序生命周期

    微信小程序 生命周期 通俗的讲,生命周期就是指一个对象的生老病死. 从软件的角度来看,生命周期指程序从创建.到开始.暂停.唤起.停止.卸载的过程. 下面从一下三个方面介绍微信小程序的生命周期: 应用生 ...

  7. error in static/js/xxx.js from UglifyJs Unpected token: punc() [static/js/xxx.js]

    出现问题 使用vue+element-ui+webpack开发项目时,Jenkins构建出现报错error in static/js/xxx.js from UglifyJs Unpected tok ...

  8. PAT 天梯赛 L2-010. 排座位 【并查集】

    题目链接 https://www.patest.cn/contests/gplt/L2-010 思路 因为 题意中 朋友的朋友 就是朋友 那么 朋友的关系 用 并查集 保存 但是 敌对关系 只有直接的 ...

  9. selenium主要功能封装

    最近实习需要使用selenium这一自动化工具对公司的运维监控系统进行自动化爬取数据,编写代码过程中负责带我的杰哥让我参考借鉴他们公司外包的运维监控系统代码,在项目中我看到了对selenium主要各功 ...

  10. [原创]java WEB学习笔记08:HttpServletRequest & ServletRequest

    本博客为原创:综合 尚硅谷(http://www.atguigu.com)的系统教程(深表感谢)和 网络上的现有资源(博客,文档,图书等),资源的出处我会标明 本博客的目的:①总结自己的学习过程,相当 ...