链接:




A Round Peg in a Ground Hole
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 4475   Accepted: 1374

Description

The DIY Furniture company specializes in assemble-it-yourself furniture kits. Typically, the pieces of wood are attached to one another using a wooden peg that fits into pre-cut holes in each piece to be attached. The pegs have a circular cross-section and
so are intended to fit inside a round hole. 

A recent factory run of computer desks were flawed when an automatic grinding machine was mis-programmed. The result is an irregularly shaped hole in one piece that, instead of the expected circular shape, is actually an irregular polygon. You need to figure
out whether the desks need to be scrapped or if they can be salvaged by filling a part of the hole with a mixture of wood shavings and glue. 

There are two concerns. First, if the hole contains any protrusions (i.e., if there exist any two interior points in the hole that, if connected by a line segment, that segment would cross one or more edges of the hole), then the filled-in-hole would not be
structurally sound enough to support the peg under normal stress as the furniture is used. Second, assuming the hole is appropriately shaped, it must be big enough to allow insertion of the peg. Since the hole in this piece of wood must match up with a corresponding
hole in other pieces, the precise location where the peg must fit is known. 

Write a program to accept descriptions of pegs and polygonal holes and determine if the hole is ill-formed and, if not, whether the peg will fit at the desired location. Each hole is described as a polygon with vertices (x1, y1), (x2, y2), . . . , (xn, yn).
The edges of the polygon are (xi, yi) to (xi+1, yi+1) for i = 1 . . . n − 1 and (xn, yn) to (x1, y1).

Input

Input consists of a series of piece descriptions. Each piece description consists of the following data: 

Line 1 < nVertices > < pegRadius > < pegX > < pegY > 

number of vertices in polygon, n (integer) 

radius of peg (real) 

X and Y position of peg (real) 

n Lines < vertexX > < vertexY > 

On a line for each vertex, listed in order, the X and Y position of vertex The end of input is indicated by a number of polygon vertices less than 3.

Output

For each piece description, print a single line containing the string: 

HOLE IS ILL-FORMED if the hole contains protrusions 

PEG WILL FIT if the hole contains no protrusions and the peg fits in the hole at the indicated position 

PEG WILL NOT FIT if the hole contains no protrusions but the peg will not fit in the hole at the indicated position

Sample Input

5 1.5 1.5 2.0
1.0 1.0
2.0 2.0
1.75 2.0
1.0 3.0
0.0 2.0
5 1.5 1.5 2.0
1.0 1.0
2.0 2.0
1.75 2.5
1.0 3.0
0.0 2.0
1

Sample Output

HOLE IS ILL-FORMED
PEG WILL NOT FIT

Source



题意:


给你一个含有 N个点的多边形和一个钉子

        判断钉子是否在多边形内部


注意:

输入的第一行先输入多边形的点数,   

再输入的是钉子的半径,然后才是坐标ToT

思路:


1.先判断多边形是不是凸多边形,

           如果不是,则输出 HOLE IS ILL-FORMED

          如果是,则继续往下判断

       2.(1)判断圆心是否在凸多边形外面

            如果在外面,直接返回 false

            如果在边上,而且半径 == 0,返回 true

                       半径不为 0 , 返回 false

            如果在内部,则遍历圆心到每一条边线段的距离是否 >= 半径

                       如果全部满足,则返回 true

                       否则返回 false

         如果钉子能装下,则输出PEG WILL FIT

         否则输出PEG WILL NOT FIT


忠告:不要NC


相关测试题目:




开始一直WA直到找了这三道基础的题目AC完



/***************************************************
Accepted 192 KB 0 ms C++ 4208 B 2013-07-28 16:02:24
题意:给你一个含有 N个点的多边形和一个钉子
判断钉子是否在多边形内部
注意:输入的第一行先输入多边形的点数,
再输入的是钉子的半径,然后才是坐标ToT 思路:1.先判断多边形是不是凸多边形,
如果不是,则输出 HOLE IS ILL-FORMED
如果是,则继续往下判断
2.(1)判断圆心是否在凸多边形外面
如果在外面,直接返回 false
如果在边上,而且半径 == 0,返回 true
半径不为 0 , 返回 false
如果在内部,则遍历圆心到每一条边线段的距离是否 >= 半径
如果全部满足,则返回 true
否则返回 false
如果钉子能装下,则输出PEG WILL FIT
否则输出PEG WILL NOT FIT
***************************************************/
#include<stdio.h>
#include<math.h> const int maxn = 200; struct Point{
double x,y; Point() {}
Point(double _x, double _y) {
x = _x;
y = _y;
}
Point operator - (const Point &B)
{
return Point(x-B.x, y-B.y);
}
}p[maxn]; struct Circle{
Point center;
double radius;
}c; const double eps = 1e-5;
int dcmp(double x)
{
if(fabs(x) < 0) return 0;
else return x < 0 ? -1 : 1;
} bool operator == (const Point &A, const Point &B)
{
return dcmp(A.x-B.x)== 0 && dcmp(A.y-B.y) == 0;
} double Cross(Point A, Point B) /** 叉积*/
{
return A.x*B.y - A.y*B.x;
}
double Dot(Point A, Point B) /** 点积*/
{
return A.x*B.x+A.y*B.y;
} double Length(Point A)
{
return sqrt(A.x*A.x + A.y*A.y);
} /** 判断多边形是否是凸多边形【含共线】*/
bool isConvex(Point *p, int n)
{
p[n] = p[0]; // 边界处理
p[n+1] = p[1]; // 注意也可以用 %n 处理, 下标从 0 开始
int now = dcmp(Cross(p[1]-p[0], p[2]-p[1]));
for(int i = 1; i < n; i++)
{
int next = dcmp(Cross(p[i+1]-p[i], p[i+2]-p[i+1]));
if(now*next < 0) //此处可以共线
{
return false;
}
now = next; //注意记录临界条件
}
return true;
} /** 点Point 是否在有 n 个顶点的凸多边形内【含边界】*/
int isPointInConvex(Point *p, int n, Point point)
{
int flag = 1;
p[n] = p[0];
int now = dcmp(Cross(p[0]-point, p[1]-point));
for(int i = 1; i < n; i++)
{
int next = dcmp(Cross(p[i]-point, p[i+1]-point));
if(next*now < 0)
{
return -1; /** 点在外面*/
}
else if(next*now == 0)
{
return 0; /** 点在边上 */
}
now = next;
}
return flag; /** 点在内部*/
} /** 判断点P 到线段 AB的距离*/
double DistanceToSegment(Point P, Point A, Point B)
{
if(A == B) return Length(P-A);
Point v1 = B-A;
Point v2 = P-A;
Point v3 = P-B; if(dcmp(Dot(v1, v2)) < 0) return Length(v2);
else if(dcmp(Dot(v1, v3)) > 0) return Length(v3);
else return fabs(Cross(v1, v2))/ Length(v1); //忠告:不要脑残的 / 2...
} /** 判断圆是否在凸多边形内部, 相切也可以*/
bool isCircleInConvex(Point *p, int n, Circle c)
{
int flag = isPointInConvex(p, n, c.center); /**判断圆心*/ if(flag == 0) /** 圆心在边上*/
{
if(c.radius == 0) return true;
else return false;
}
else if(flag == 1) /** 圆心在内部*/
{
p[n] = p[0]; /** 边界处理*/
for(int i = 0; i < n; i++) /** 遍历所有的边 */
{
if(dcmp(DistanceToSegment(c.center, p[i], p[i+1])-c.radius) < 0)
{
return false;
}
}
return true;
}
else return false; /** 圆心在外部*/
} int main()
{
int n;
while(scanf("%d", &n) != EOF)
{
if(n < 3) break; /** 忠告:输入时注意顺序, 不要脑残。。。*/
scanf("%lf%lf%lf", &c.radius, &c.center.x, &c.center.y);
for(int i = 0; i < n; i++)
scanf("%lf%lf", &p[i].x, &p[i].y); bool flag = isConvex(p, n); /** 判断是否是凸多边形*/
if(flag)
{
flag = isCircleInConvex(p, n, c);
if(flag) printf("PEG WILL FIT\n");
else printf("PEG WILL NOT FIT\n");
}
else printf("HOLE IS ILL-FORMED\n");
}
return 0;
}







POJ 1584 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】的更多相关文章

  1. POJ 1584 A Round Peg in a Ground Hole 判断凸多边形 点到线段距离 点在多边形内

    首先判断是不是凸多边形 然后判断圆是否在凸多边形内 不知道给出的点是顺时针还是逆时针,所以用判断是否在多边形内的模板,不用是否在凸多边形内的模板 POJ 1584 A Round Peg in a G ...

  2. POJ 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4438   Acc ...

  3. POJ 1584 A Round Peg in a Ground Hole 判断凸多边形,判断点在凸多边形内

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5456   Acc ...

  4. POJ 1584 A Round Peg in a Ground Hole[判断凸包 点在多边形内]

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6682   Acc ...

  5. POJ - 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)

    http://poj.org/problem?id=1584 题意 按照顺时针或逆时针方向输入一个n边形的顶点坐标集,先判断这个n边形是否为凸包. 再给定一个圆形(圆心坐标和半径),判断这个圆是否完全 ...

  6. POJ 1584 A Round Peg in a Ground Hole --判定点在形内形外形上

    题意: 给一个圆和一个多边形,多边形点可能按顺时针给出,也可能按逆时针给出,先判断多边形是否为凸包,再判断圆是否在凸包内. 解法: 先判是否为凸包,沿着i=0~n,先得出初始方向dir,dir=1为逆 ...

  7. 简单几何(点的位置) POJ 1584 A Round Peg in a Ground Hole

    题目传送门 题意:判断给定的多边形是否为凸的,peg(pig?)是否在多边形内,且以其为圆心的圆不超出多边形(擦着边也不行). 分析:判断凸多边形就用凸包,看看点集的个数是否为n.在多边形内用叉积方向 ...

  8. POJ 1584 A Round Peg in a Ground Hole

    先判断是不是N多边形,求一下凸包,如果所有点都用上了,那么就是凸多边形 判断圆是否在多边形内, 先排除圆心在多边形外的情况 剩下的情况可以利用圆心到每条边的最短距离与半径的大小来判断 #include ...

  9. POJ 1518 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】

    链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

随机推荐

  1. Scala和Java二种方式实战Spark Streaming开发

    一.Java方式开发 1.开发前准备:假定您以搭建好了Spark集群. 2.开发环境采用eclipse maven工程,需要添加Spark Streaming依赖. 3.Spark streaming ...

  2. 2017.5.24 在intelliJ IDEA 中生成war包

    1.勾选Build on make file -> project structure -> Artifacts 2.compile module "***" 选择项目 ...

  3. Linux Barrier I/O 实现分析与barrier内存屏蔽 总结

    一直以来.I/O顺序问题一直困扰着我.事实上这个问题是一个比較综合的问题,它涉及的层次比較多,从VFS page cache到I/O调度算法,从i/o子系统到存储外设.而Linux I/O barri ...

  4. Linux学习笔记 (一)初识linux

    一.什么是Linux Linux是一套免费使用和自由传播的类Unix操作系统,是一个基于POSIX和UNIX的多用户.多任务.支持多线程和多CPU的操作系统.它能运行主要的UNIX工具软件.应用程序和 ...

  5. Linux经常使用命令(八) - touch

    linux的touch命令不经常使用, 一般用来改动文件时间戳, 或者新建一个不存在的文件. 1. 命令格式: touch [选项]  文件 2. 命令參数: -a    仅仅更改存取时间. -c   ...

  6. boost库常用功能

    1.shared_ptr shared_ptr除了最基本的可以用new初始化以外,还可以使用其他方式初始化.在使用一些c的api时候,这种初始化方式非常有用,如下 boost::shared_ptr& ...

  7. 【已解决】iView-admin Editor 组件 绑定默认值问题

    iView-admin Editor 组件 绑定默认值问题 发现 editor 组件,设置v-model 后, 修改 v-model 数据, editor组件没有自动渲染,需要手动设置渲染  this ...

  8. Nginx访问日志和错误日志的拆分(Logstash)

    >> from zhuhaiqing.info input { file { type =>> "nginx-access" path =>> ...

  9. swift - 全屏pop手势

    UINavigationController系统自带有侧滑手势,但是这个手势第一点只能边缘侧滑才可以有效,第二点当手动隐藏系统的导航时,这个手势就不能生效了 为了能到达到全屏pop的效果这里有2中解决 ...

  10. ACdream 1216 (ASC训练1) Beautiful People(DP)

    题目地址:http://acdream.info/problem? pid=1216 这题一開始用的是线段树.后来发现查询的时候还须要DP处理.挺麻烦..也就不了了之了..后来想到,这题事实上就是一个 ...