【文献阅读】Perceptual Generative Adversarial Networks for Small Object Detection –CVPR-2017
Perceptual Generative Adversarial Networks for Small Object Detection
2017CVPR 新鲜出炉的paper,这是针对small object detection的一篇文章,采用PGAN来提升small object detection任务的performance。
最近也没做object detection,只是别人推荐了这篇paper,看了摘要觉得通俗易懂就往下看了。。。最后发现还是没怎么搞懂,只是明白PGAN的模型。如果理解有误的地方,请指出。
言归正传,PGAN为什么对small object有效?具体是这样,small object 不好检测,而large object好检测,那PGAN就让generator 学习一个映射,把small object 的features 映射成 large object 的features,然后就好检测了。PGAN呢,主要就看它的generator。
传统GAN中的generator是学习从随机噪声到图像的映射,也就是generator可以把一个噪声变成图片,而PGAN的思想是让generator把small object 变成 large object,这样就有利于检测了。 来看看文章中的原话都是怎么介绍generator的:
- we address the small object detection problem by developing a single architecture that internally lifts representations of small objects to “super-resolved” ones, achieving similar characteristics as large objects
- Perceptual Generative Adversarial Network (Perceptual GAN) model that improves small object detection through narrowing representation difference of small objects from the large ones.
- generator learns to transfer perceived poor representations of the small objects to super-resolved ones
- The Perceptual GAN aims to enhance the representations of small objects to be similar to those of large object
- the generator is a deep residual based feature generative model which transforms the original poor features of small objects to highly discriminative ones by introducing fine-grained details from lower-level layers, achieving “super-resolution” on the intermediate representations
6.传统的generator G represents a generator that learns to map data z from the noise distribution pz(z) to the distribution pdata(x) over data x,而PGAN的generator中 x and z are the representations for large objects and small objects - The generator network aims to generate super-resolved representations for small objects to improve detection accurac
- the generator as a deep residual learning network that augments the representations of small objects to super-resolved ones by introducing more fine-grained details absent from the small objects through residual learning
文章在不同地方不断的重复了一个意思,就是generator学习的是一个映射,这个映射就是把假(small object)的变成真(large object)的
来看看generator长什么样子
分两个部分,这里就没看懂是什么意思了,或许和object detection有关了。最终得出的结果是Super-Resolved Features 这个就很像Large Objects Featuresle. 如图,左下角是G生成的,左上角是真实的:
讲完了generator 就到discriminator了,这里的discrimintor和传统的GAN也有不一样的地方。
在这里,加入了一个新的loss,叫做perceptual loss ,PGAN也因此而得名(我猜的,很明显嘛)这个loss我也是没看明白的地方,贴原文大家看看吧(有理解的这部分的同学,请在评论区讲一讲,供大家学习)
1. justify the detection accuracy benefiting from the generated super-resolved features with a perceptual loss
看完paper感觉作者没有很直接说提出PGAN是inspired by哪些文章~不过GAN(2014 Goodfellow)
【文献阅读】Perceptual Generative Adversarial Networks for Small Object Detection –CVPR-2017的更多相关文章
- Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection
Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11 19:47:46 CVPR 20 ...
- Perceptual Generative Adversarial Networks for Small Object Detection
Perceptual Generative Adversarial Networks for Small Object Detection 感知生成对抗网络用于目标检测 论文链接:https://ar ...
- 文献阅读报告 - Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks
paper:Gupta A , Johnson J , Fei-Fei L , et al. Social GAN: Socially Acceptable Trajectories with Gen ...
- CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks阅读笔记
CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks 2020 CVPR 2005.09544.pdf ...
- 生成对抗网络(Generative Adversarial Networks,GAN)初探
1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话 ...
- 语音合成论文翻译:2019_MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis
论文地址:MelGAN:条件波形合成的生成对抗网络 代码地址:https://github.com/descriptinc/melgan-neurips 音频实例:https://melgan-neu ...
- StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 本文将利 ...
- 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks
Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...
- 《Self-Attention Generative Adversarial Networks》里的注意力计算
前天看了 criss-cross 里的注意力模型 仔细理解了 在: https://www.cnblogs.com/yjphhw/p/10750797.html 今天又看了一个注意力模型 < ...
随机推荐
- final-第十章
1,nas概念 NAS就是一种直接连接到用户网络中,并具有信息存储功能的硬件设备. NAS是由处理器,文件服务管理模块,和存储部分等组成的. 2,san概念 SAN是一种利用光纤集线器,光纤路由器,光 ...
- DOTween教程
参考自DOTween官方文档: DOTween起始上手起来很快,当然前提也是用心看一下哈. > 可以在Unity AssetStore下载得到. 使用方法: 准备: 在导入DOTween后,你需 ...
- 11款最棒的Linux数据恢复工具
无论你使用的是台式电脑还是笔记本,需要关注的重点之一都是如何保护好你的宝贵数据.因为总会有各种突发情况使你的系统崩溃,然后你要做的就是恢复数据.不管你怎么想,要是我失去了所有的数据却无法恢复的话,我会 ...
- http://jingyan.baidu.com/article/0eb457e5208cbb03f0a9054c.html
http://jingyan.baidu.com/article/0eb457e5208cbb03f0a9054c.html
- Python-使用Magellan进行数据匹配总结
参考:http://www.biggorilla.org/zh-hans/walkt/ 使用Magellan进行数据匹配过程如下: 假设有两个数据源为A和B, A共有四列数据:(A_Column1,A ...
- Linux取消挂载,删除用户及其目录
取消挂载 取消挂载命令: umount /dev/sdb 命令umount 文件系统/挂载点 umount /dev/sdb 例如:umount /dev/sdb即可将sdb1取消挂载. 如果出现de ...
- 转:阿里 Weex 思路与实战(web相关)
Weex——关于移动端动态性的思考.实现和未来 2016-04-05 勾股.伊耆 移动开发前线 本文由手机淘宝技术团队赵锦江(勾股).黄金涌(伊耆)等专家创作.手淘作为电商应用,对客户端/前端的动态性 ...
- debug模式下dlgdata.cpp line 43 断言失败
我在VC6下显示Line 43, Line 624行失败 网上有Line 40行猜测是其他版本 运行程序出错,定位如下: HWND CDataExchange::PrepareCtrl(int nID ...
- 解决dubbo问题:forbid consumer(2)
线下环境经常出现类似这种异常: com.alibaba.dubbo.rpc.RpcException: Forbid consumer 10.0.53.69 access service com.ku ...
- [Angular] @ViewChild read custom directive and exportAs
For example we have a component: <Card ></Card> And a driective: <Card highlighted> ...