Perceptual Generative Adversarial Networks for Small Object Detection

2017CVPR 新鲜出炉的paper,这是针对small object detection的一篇文章,采用PGAN来提升small object detection任务的performance。

最近也没做object detection,只是别人推荐了这篇paper,看了摘要觉得通俗易懂就往下看了。。。最后发现还是没怎么搞懂,只是明白PGAN的模型。如果理解有误的地方,请指出。

言归正传,PGAN为什么对small object有效?具体是这样,small object 不好检测,而large object好检测,那PGAN就让generator 学习一个映射,把small object 的features 映射成 large object 的features,然后就好检测了。PGAN呢,主要就看它的generator。

传统GAN中的generator是学习从随机噪声到图像的映射,也就是generator可以把一个噪声变成图片,而PGAN的思想是让generator把small object 变成 large object,这样就有利于检测了。 来看看文章中的原话都是怎么介绍generator的:

  1. we address the small object detection problem by developing a single architecture that internally lifts representations of small objects to “super-resolved” ones, achieving similar characteristics as large objects
  2. Perceptual Generative Adversarial Network (Perceptual GAN) model that improves small object detection through narrowing representation difference of small objects from the large ones.
  3. generator learns to transfer perceived poor representations of the small objects to super-resolved ones
  4. The Perceptual GAN aims to enhance the representations of small objects to be similar to those of large object
  5. the generator is a deep residual based feature generative model which transforms the original poor features of small objects to highly discriminative ones by introducing fine-grained details from lower-level layers, achieving “super-resolution” on the intermediate representations

    6.传统的generator G represents a generator that learns to map data z from the noise distribution pz(z) to the distribution pdata(x) over data x,而PGAN的generator中 x and z are the representations for large objects and small objects
  6. The generator network aims to generate super-resolved representations for small objects to improve detection accurac
  7. the generator as a deep residual learning network that augments the representations of small objects to super-resolved ones by introducing more fine-grained details absent from the small objects through residual learning

文章在不同地方不断的重复了一个意思,就是generator学习的是一个映射,这个映射就是把假(small object)的变成真(large object)的

来看看generator长什么样子

分两个部分,这里就没看懂是什么意思了,或许和object detection有关了。最终得出的结果是Super-Resolved Features 这个就很像Large Objects Featuresle. 如图,左下角是G生成的,左上角是真实的:

讲完了generator 就到discriminator了,这里的discrimintor和传统的GAN也有不一样的地方。

在这里,加入了一个新的loss,叫做perceptual loss ,PGAN也因此而得名(我猜的,很明显嘛)这个loss我也是没看明白的地方,贴原文大家看看吧(有理解的这部分的同学,请在评论区讲一讲,供大家学习)

1. justify the detection accuracy benefiting from the generated super-resolved features with a perceptual loss

看完paper感觉作者没有很直接说提出PGAN是inspired by哪些文章~不过GAN(2014 Goodfellow)

【文献阅读】Perceptual Generative Adversarial Networks for Small Object Detection –CVPR-2017的更多相关文章

  1. Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 20 ...

  2. Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 感知生成对抗网络用于目标检测 论文链接:https://ar ...

  3. 文献阅读报告 - Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks

    paper:Gupta A , Johnson J , Fei-Fei L , et al. Social GAN: Socially Acceptable Trajectories with Gen ...

  4. CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks阅读笔记

    CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks 2020 CVPR 2005.09544.pdf ...

  5. 生成对抗网络(Generative Adversarial Networks,GAN)初探

    1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话 ...

  6. 语音合成论文翻译:2019_MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis

    论文地址:MelGAN:条件波形合成的生成对抗网络 代码地址:https://github.com/descriptinc/melgan-neurips 音频实例:https://melgan-neu ...

  7. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记

    StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks  本文将利 ...

  8. 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks

    Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...

  9. 《Self-Attention Generative Adversarial Networks》里的注意力计算

    前天看了 criss-cross 里的注意力模型  仔细理解了  在: https://www.cnblogs.com/yjphhw/p/10750797.html 今天又看了一个注意力模型 < ...

随机推荐

  1. final-第十章

    1,nas概念 NAS就是一种直接连接到用户网络中,并具有信息存储功能的硬件设备. NAS是由处理器,文件服务管理模块,和存储部分等组成的. 2,san概念 SAN是一种利用光纤集线器,光纤路由器,光 ...

  2. DOTween教程

    参考自DOTween官方文档: DOTween起始上手起来很快,当然前提也是用心看一下哈. > 可以在Unity AssetStore下载得到. 使用方法: 准备: 在导入DOTween后,你需 ...

  3. 11款最棒的Linux数据恢复工具

    无论你使用的是台式电脑还是笔记本,需要关注的重点之一都是如何保护好你的宝贵数据.因为总会有各种突发情况使你的系统崩溃,然后你要做的就是恢复数据.不管你怎么想,要是我失去了所有的数据却无法恢复的话,我会 ...

  4. http://jingyan.baidu.com/article/0eb457e5208cbb03f0a9054c.html

    http://jingyan.baidu.com/article/0eb457e5208cbb03f0a9054c.html

  5. Python-使用Magellan进行数据匹配总结

    参考:http://www.biggorilla.org/zh-hans/walkt/ 使用Magellan进行数据匹配过程如下: 假设有两个数据源为A和B, A共有四列数据:(A_Column1,A ...

  6. Linux取消挂载,删除用户及其目录

    取消挂载 取消挂载命令: umount /dev/sdb 命令umount 文件系统/挂载点 umount /dev/sdb 例如:umount /dev/sdb即可将sdb1取消挂载. 如果出现de ...

  7. 转:阿里 Weex 思路与实战(web相关)

    Weex——关于移动端动态性的思考.实现和未来 2016-04-05 勾股.伊耆 移动开发前线 本文由手机淘宝技术团队赵锦江(勾股).黄金涌(伊耆)等专家创作.手淘作为电商应用,对客户端/前端的动态性 ...

  8. debug模式下dlgdata.cpp line 43 断言失败

    我在VC6下显示Line 43, Line 624行失败 网上有Line 40行猜测是其他版本 运行程序出错,定位如下: HWND CDataExchange::PrepareCtrl(int nID ...

  9. 解决dubbo问题:forbid consumer(2)

    线下环境经常出现类似这种异常: com.alibaba.dubbo.rpc.RpcException: Forbid consumer 10.0.53.69 access service com.ku ...

  10. [Angular] @ViewChild read custom directive and exportAs

    For example we have a component: <Card ></Card> And a driective: <Card highlighted> ...