【文献阅读】Perceptual Generative Adversarial Networks for Small Object Detection –CVPR-2017
Perceptual Generative Adversarial Networks for Small Object Detection
2017CVPR 新鲜出炉的paper,这是针对small object detection的一篇文章,采用PGAN来提升small object detection任务的performance。
最近也没做object detection,只是别人推荐了这篇paper,看了摘要觉得通俗易懂就往下看了。。。最后发现还是没怎么搞懂,只是明白PGAN的模型。如果理解有误的地方,请指出。
言归正传,PGAN为什么对small object有效?具体是这样,small object 不好检测,而large object好检测,那PGAN就让generator 学习一个映射,把small object 的features 映射成 large object 的features,然后就好检测了。PGAN呢,主要就看它的generator。
传统GAN中的generator是学习从随机噪声到图像的映射,也就是generator可以把一个噪声变成图片,而PGAN的思想是让generator把small object 变成 large object,这样就有利于检测了。 来看看文章中的原话都是怎么介绍generator的:
- we address the small object detection problem by developing a single architecture that internally lifts representations of small objects to “super-resolved” ones, achieving similar characteristics as large objects
- Perceptual Generative Adversarial Network (Perceptual GAN) model that improves small object detection through narrowing representation difference of small objects from the large ones.
- generator learns to transfer perceived poor representations of the small objects to super-resolved ones
- The Perceptual GAN aims to enhance the representations of small objects to be similar to those of large object
- the generator is a deep residual based feature generative model which transforms the original poor features of small objects to highly discriminative ones by introducing fine-grained details from lower-level layers, achieving “super-resolution” on the intermediate representations
6.传统的generator G represents a generator that learns to map data z from the noise distribution pz(z) to the distribution pdata(x) over data x,而PGAN的generator中 x and z are the representations for large objects and small objects - The generator network aims to generate super-resolved representations for small objects to improve detection accurac
- the generator as a deep residual learning network that augments the representations of small objects to super-resolved ones by introducing more fine-grained details absent from the small objects through residual learning
文章在不同地方不断的重复了一个意思,就是generator学习的是一个映射,这个映射就是把假(small object)的变成真(large object)的
来看看generator长什么样子
分两个部分,这里就没看懂是什么意思了,或许和object detection有关了。最终得出的结果是Super-Resolved Features 这个就很像Large Objects Featuresle. 如图,左下角是G生成的,左上角是真实的:
讲完了generator 就到discriminator了,这里的discrimintor和传统的GAN也有不一样的地方。
在这里,加入了一个新的loss,叫做perceptual loss ,PGAN也因此而得名(我猜的,很明显嘛)这个loss我也是没看明白的地方,贴原文大家看看吧(有理解的这部分的同学,请在评论区讲一讲,供大家学习)
1. justify the detection accuracy benefiting from the generated super-resolved features with a perceptual loss
看完paper感觉作者没有很直接说提出PGAN是inspired by哪些文章~不过GAN(2014 Goodfellow)
【文献阅读】Perceptual Generative Adversarial Networks for Small Object Detection –CVPR-2017的更多相关文章
- Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection
Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11 19:47:46 CVPR 20 ...
- Perceptual Generative Adversarial Networks for Small Object Detection
Perceptual Generative Adversarial Networks for Small Object Detection 感知生成对抗网络用于目标检测 论文链接:https://ar ...
- 文献阅读报告 - Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks
paper:Gupta A , Johnson J , Fei-Fei L , et al. Social GAN: Socially Acceptable Trajectories with Gen ...
- CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks阅读笔记
CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks 2020 CVPR 2005.09544.pdf ...
- 生成对抗网络(Generative Adversarial Networks,GAN)初探
1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话 ...
- 语音合成论文翻译:2019_MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis
论文地址:MelGAN:条件波形合成的生成对抗网络 代码地址:https://github.com/descriptinc/melgan-neurips 音频实例:https://melgan-neu ...
- StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 本文将利 ...
- 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks
Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...
- 《Self-Attention Generative Adversarial Networks》里的注意力计算
前天看了 criss-cross 里的注意力模型 仔细理解了 在: https://www.cnblogs.com/yjphhw/p/10750797.html 今天又看了一个注意力模型 < ...
随机推荐
- 1,java的跨平台原理
简单讲一下java的跨平台原理: (1)为什么跨平台: 由于各OS支持的指令集各不相同,就需要程序在不同的平台执行不同的代码 (2)JAVA是如何实现的: ava开发了适合不同的OS及不同位数的jav ...
- 解决方案:An error was encountered while running(Domain=FBSOpenApplicationErrorDomain, Code=4)
iOS simulator出现问题,提示: An error was encountered while running (Domain = FBSOpenApplicationErrorDomain ...
- 玩转Nuget服务器搭建(二)
之所以分开来写这几部分,是因为今天搭建的过程中,碰到了几个问题,特别提一下,让大家省下这部分时间(毕竟人生苦短嘛,你如果就是闲的蛋疼,请给我你的GUID,我送你几瓶风油精). NugetServer ...
- 转: 初识Agile/CMMI/Scrum
转:http://www.cnblogs.com/maxwell/p/5093917.html 一.背景介绍 在朋友(aehyok)的建议下,初步去了解Visual Studio Online,简称V ...
- 3D数学读书笔记——矩阵基础番外篇之线性变换
本系列文章由birdlove1987编写.转载请注明出处. 文章链接:http://blog.csdn.net/zhurui_idea/article/details/25102425 前面有一篇文章 ...
- .net 真实代理和透明代理的交互
.本地代理调用 using System; using System.Runtime.Remoting ; using System.Runtime.Remoting.Services ; using ...
- 倍福TwinCAT(贝福Beckhoff)基础教程 松下伺服驱动器报错 81.0怎么办
同步周期有问题 请确认MOTION的伺服周期是一致的,最好跟MAIN主程序也一样,所有周期都是2ms即可 更多教学视频和资料下载,欢迎关注以下信息: 我的优酷空间: http://i.yo ...
- Solidworks 好的测试题模拟题
题目:按照下图构建草图,注意设置必要的几何约束. 问题: 1.参照下图所示参数时请问其中绿色区域的面积为多少平方毫米? 题目:参照下图绘制草图轮廓,注意图中各线条之间均为相切过渡. 问题: ...
- react 打包后,项目部署完毕,刷新页面报错(404)
原因解析: 之所以你在浏览器内可以由首页跳转到其他路由地址,是因为这是由前端自行渲染的,你在React Router定义了对应的路由,脚本并没有刷新网页访问后台,是JS动态更改了location. 当 ...
- JavaScript 屏蔽退格键
document.onkeydown = function(){//屏蔽Backspace键 if (event.keyCode==8){ event.keyCode=0; event.returnV ...