Perceptual Generative Adversarial Networks for Small Object Detection

2017CVPR 新鲜出炉的paper,这是针对small object detection的一篇文章,采用PGAN来提升small object detection任务的performance。

最近也没做object detection,只是别人推荐了这篇paper,看了摘要觉得通俗易懂就往下看了。。。最后发现还是没怎么搞懂,只是明白PGAN的模型。如果理解有误的地方,请指出。

言归正传,PGAN为什么对small object有效?具体是这样,small object 不好检测,而large object好检测,那PGAN就让generator 学习一个映射,把small object 的features 映射成 large object 的features,然后就好检测了。PGAN呢,主要就看它的generator。

传统GAN中的generator是学习从随机噪声到图像的映射,也就是generator可以把一个噪声变成图片,而PGAN的思想是让generator把small object 变成 large object,这样就有利于检测了。 来看看文章中的原话都是怎么介绍generator的:

  1. we address the small object detection problem by developing a single architecture that internally lifts representations of small objects to “super-resolved” ones, achieving similar characteristics as large objects
  2. Perceptual Generative Adversarial Network (Perceptual GAN) model that improves small object detection through narrowing representation difference of small objects from the large ones.
  3. generator learns to transfer perceived poor representations of the small objects to super-resolved ones
  4. The Perceptual GAN aims to enhance the representations of small objects to be similar to those of large object
  5. the generator is a deep residual based feature generative model which transforms the original poor features of small objects to highly discriminative ones by introducing fine-grained details from lower-level layers, achieving “super-resolution” on the intermediate representations

    6.传统的generator G represents a generator that learns to map data z from the noise distribution pz(z) to the distribution pdata(x) over data x,而PGAN的generator中 x and z are the representations for large objects and small objects
  6. The generator network aims to generate super-resolved representations for small objects to improve detection accurac
  7. the generator as a deep residual learning network that augments the representations of small objects to super-resolved ones by introducing more fine-grained details absent from the small objects through residual learning

文章在不同地方不断的重复了一个意思,就是generator学习的是一个映射,这个映射就是把假(small object)的变成真(large object)的

来看看generator长什么样子

分两个部分,这里就没看懂是什么意思了,或许和object detection有关了。最终得出的结果是Super-Resolved Features 这个就很像Large Objects Featuresle. 如图,左下角是G生成的,左上角是真实的:

讲完了generator 就到discriminator了,这里的discrimintor和传统的GAN也有不一样的地方。

在这里,加入了一个新的loss,叫做perceptual loss ,PGAN也因此而得名(我猜的,很明显嘛)这个loss我也是没看明白的地方,贴原文大家看看吧(有理解的这部分的同学,请在评论区讲一讲,供大家学习)

1. justify the detection accuracy benefiting from the generated super-resolved features with a perceptual loss

看完paper感觉作者没有很直接说提出PGAN是inspired by哪些文章~不过GAN(2014 Goodfellow)

【文献阅读】Perceptual Generative Adversarial Networks for Small Object Detection –CVPR-2017的更多相关文章

  1. Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 20 ...

  2. Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 感知生成对抗网络用于目标检测 论文链接:https://ar ...

  3. 文献阅读报告 - Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks

    paper:Gupta A , Johnson J , Fei-Fei L , et al. Social GAN: Socially Acceptable Trajectories with Gen ...

  4. CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks阅读笔记

    CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks 2020 CVPR 2005.09544.pdf ...

  5. 生成对抗网络(Generative Adversarial Networks,GAN)初探

    1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话 ...

  6. 语音合成论文翻译:2019_MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis

    论文地址:MelGAN:条件波形合成的生成对抗网络 代码地址:https://github.com/descriptinc/melgan-neurips 音频实例:https://melgan-neu ...

  7. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记

    StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks  本文将利 ...

  8. 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks

    Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...

  9. 《Self-Attention Generative Adversarial Networks》里的注意力计算

    前天看了 criss-cross 里的注意力模型  仔细理解了  在: https://www.cnblogs.com/yjphhw/p/10750797.html 今天又看了一个注意力模型 < ...

随机推荐

  1. 1,java的跨平台原理

    简单讲一下java的跨平台原理: (1)为什么跨平台: 由于各OS支持的指令集各不相同,就需要程序在不同的平台执行不同的代码 (2)JAVA是如何实现的: ava开发了适合不同的OS及不同位数的jav ...

  2. 解决方案:An error was encountered while running(Domain=FBSOpenApplicationErrorDomain, Code=4)

    iOS simulator出现问题,提示: An error was encountered while running (Domain = FBSOpenApplicationErrorDomain ...

  3. 玩转Nuget服务器搭建(二)

    之所以分开来写这几部分,是因为今天搭建的过程中,碰到了几个问题,特别提一下,让大家省下这部分时间(毕竟人生苦短嘛,你如果就是闲的蛋疼,请给我你的GUID,我送你几瓶风油精). NugetServer ...

  4. 转: 初识Agile/CMMI/Scrum

    转:http://www.cnblogs.com/maxwell/p/5093917.html 一.背景介绍 在朋友(aehyok)的建议下,初步去了解Visual Studio Online,简称V ...

  5. 3D数学读书笔记——矩阵基础番外篇之线性变换

    本系列文章由birdlove1987编写.转载请注明出处. 文章链接:http://blog.csdn.net/zhurui_idea/article/details/25102425 前面有一篇文章 ...

  6. .net 真实代理和透明代理的交互

    .本地代理调用 using System; using System.Runtime.Remoting ; using System.Runtime.Remoting.Services ; using ...

  7. 倍福TwinCAT(贝福Beckhoff)基础教程 松下伺服驱动器报错 81.0怎么办

    同步周期有问题   请确认MOTION的伺服周期是一致的,最好跟MAIN主程序也一样,所有周期都是2ms即可     更多教学视频和资料下载,欢迎关注以下信息: 我的优酷空间: http://i.yo ...

  8. Solidworks 好的测试题模拟题

    题目:按照下图构建草图,注意设置必要的几何约束. 问题:   1.参照下图所示参数时请问其中绿色区域的面积为多少平方毫米?     题目:参照下图绘制草图轮廓,注意图中各线条之间均为相切过渡. 问题: ...

  9. react 打包后,项目部署完毕,刷新页面报错(404)

    原因解析: 之所以你在浏览器内可以由首页跳转到其他路由地址,是因为这是由前端自行渲染的,你在React Router定义了对应的路由,脚本并没有刷新网页访问后台,是JS动态更改了location. 当 ...

  10. JavaScript 屏蔽退格键

    document.onkeydown = function(){//屏蔽Backspace键 if (event.keyCode==8){ event.keyCode=0; event.returnV ...