Reactor Cooling

time limit per test: 0.5 sec.

memory limit per test: 65536 KB
input: standard

output: standard
The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear reactor to produce plutonium for the nuclear bomb they are planning to create. Being the wicked computer genius of this group, you are responsible for developing
the cooling system for the reactor. 



The cooling system of the reactor consists of the number of pipes that special cooling liquid flows by. Pipes are connected at special points, called nodes, each pipe has the starting node and the end point. The liquid must flow by the pipe from its start point
to its end point and not in the opposite direction. 



Let the nodes be numbered from 1 to N. The cooling system must be designed so that the liquid is circulating by the pipes and the amount of the liquid coming to each node (in the unit of time) is equal to the amount of liquid leaving the node. That is, if we
designate the amount of liquid going by the pipe from i-th node to j-th as fij, (put fij = 0 if there is no pipe from node i to node j), for each i the following condition must hold: 





sum(j=1..N, fij) = sum(j=1..N, fji)

Each pipe has some finite capacity, therefore for each i and j connected by the pipe must be fij ≤ cij where cij is the capacity of the pipe. To provide sufficient cooling, the amount of the liquid flowing by the pipe going
from i-th to j-th nodes must be at least lij, thus it must be fij ≥ lij



Given cij and lij for all pipes, find the amount fij, satisfying the conditions specified above. 



Input


The first line of the input file contains the number N (1 ≤ N ≤ 200) - the number of nodes and and M — the number of pipes. The following M lines contain four integer number each - i, j, lij and cij each. There is at most one pipe connecting
any two nodes and 0 ≤ lij ≤ cij ≤ 105 for all pipes. No pipe connects a node to itself. If there is a pipe from i-th node to j-th, there is no pipe from j-th node to i-th. 


Output


On the first line of the output file print YES if there is the way to carry out reactor cooling and NO if there is none. In the first case M integers must follow, k-th number being the amount of liquid flowing by the k-th pipe. Pipes are numbered as they are
given in the input file. 


Sample test(s)


Input

Test #1 4 6 1 2 1 2 2 3 1 2 3 4 1 2 4 1 1 2 1 3 1 2 4 2 1 2 Test #2 4 6 1 2 1 3 2 3 1 3 3 4 1 3 4 1 1 3 1 3 1 3 4 2 1 3 
Output

Test #1 



NO 



Test #2 



YES 









1

1

周源的论文 

url=hFKPly4PzyfwfQJx4jVnR-xzaGfuBZ-gF4Las1qIe0Sg21NMblE7qFvXMcvbrkhTEv_-UoZIeX6lYNbh1FXfMcHKX_RcQXinjlM-5jticxu">一种简易的方法求解流量有上下界的网络中网络流问题

直接套路之

#include <cstdlib>
#include <cctype>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <bitset> using namespace std; #define PB push_back
#define MP make_pair
#define REP(i,n) for(int i=0;i<(n);++i)
#define FOR(i,l,h) for(int i=(l);i<=(h);++i)
#define DWN(i,h,l) for(int i=(h);i>=(l);--i)
#define CLR(vis,pos) memset(vis,pos,sizeof(vis))
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LINF 1000000000000000000LL
#define eps 1e-8 typedef long long ll; const int mm=1000005;
const int mn=22222; int n,m;
int node,s,t,edge,max_flow; int ver[mm],flow[mm],next[mm]; int head[mn],work[mn],dis[mn],q[mn]; int vis[mn]; inline void init(int _node,int _s,int _t)
{
node=_node, s=_s, t=_t;
for(int i=0;i<node;++i)
head[i]=-1;
edge=max_flow=0;
} inline void addedge(int u,int v,int c)
{
ver[edge]=v,flow[edge]=c,next[edge]=head[u],head[u]=edge++;
ver[edge]=u,flow[edge]=0,next[edge]=head[v],head[v]=edge++;
} bool Dinic_bfs()
{
int i,u,v,l,r=0;
for(i=0;i<node;++i) dis[i]=-1;
dis[ q[r++]=s ] = 0;
for(l=0;l<r;l++)
{
for(i=head[ u=q[l] ]; i>=0 ;i=next[i])
if(flow[i] && dis[ v=ver[i] ]<0)
{
dis[ q[r++]=v ]=dis[u]+1;
if(v==t) return 1;
}
}
return 0;
} int Dinic_dfs(int u,int exp)
{
if(u==t) return exp;
for(int &i=work[u],v,temp; i>=0 ;i=next[i])
{
if(flow[i] && dis[ v=ver[i] ]==dis[u]+1 && ( temp=Dinic_dfs(v,min(exp,flow[i])) )>0)
{
flow[i]-=temp;
flow[i^1]+=temp;
return temp;
}
}
return 0;
} int Dinic_flow()
{
int res,i;
while(Dinic_bfs())
{
for(i=0;i<node;++i) work[i]=head[i];
while( ( res=Dinic_dfs(s,INF) ) ) max_flow+=res;
}
return max_flow;
} int w[mn],l[mn]; int main()
{
int n,m;
while(cin>>n>>m){
CLR(w,0);
init(n+2,0,n+1);
int u,v,c;
REP(i,m){
scanf("%d%d%d%d",&u,&v,&l[i],&c);
addedge(u,v,c-l[i]);
w[u]-=l[i];
w[v]+=l[i];
}
int sum=0;
FOR(i,1,n){
if(w[i]>0){
addedge(s,i,w[i]);
sum+=w[i];
}
if(w[i]<0)
addedge(i,t,-w[i]);
}
int ans=Dinic_flow();
if(ans!=sum)
printf("NO\n");
else{
printf("YES\n");
REP(i,m)
printf("%d\n",flow[2*i+1]+l[i]);
}
}
return 0;
}

SGU 194 Reactor Cooling 无源汇带上下界可行流的更多相关文章

  1. ZOJ 2314 (sgu 194) Reactor Cooling (无源汇有上下界最大流)

    题意: 给定n个点和m条边, 每条边有流量上下限[b,c], 求是否存在一种流动方法使得每条边流量在范围内, 而且每个点的流入 = 流出 分析: 无源汇有上下界最大流模板, 记录每个点流的 in 和 ...

  2. SGU 194. Reactor Cooling(无源汇有上下界的网络流)

    时间限制:0.5s 空间限制:6M 题意: 显然就是求一个无源汇有上下界的网络流的可行流的问题 Solution: 没什么好说的,直接判定可行流,输出就好了 code /* 无汇源有上下界的网络流 * ...

  3. ZOJ 2314 Reactor Cooling(无源汇有上下界可行流)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2314 题目大意: 给n个点,及m根pipe,每根pipe用来流躺 ...

  4. Zoj 2314 Reactor Cooling(无源汇有上下界可行流)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 题意:    给n个点,及m根pipe,每根pipe用来流躺液体的,单向 ...

  5. LOJ [#115. 无源汇有上下界可行流](https://loj.ac/problem/115)

    #115. 无源汇有上下界可行流 先扔个板子,上下界的东西一点点搞,写在奇怪的合集里面 Code: #include <cstdio> #include <cstring> # ...

  6. 2018.08.20 loj#115. 无源汇有上下界可行流(模板)

    传送门 又get到一个新技能,好兴奋的说啊. 一道无源汇有上下界可行流的模板题. 其实这东西也不难,就是将下界变形而已. 准确来说,就是对于每个点,我们算出会从它那里强制流入与流出的流量,然后与超级源 ...

  7. [loj#115] 无源汇有上下界可行流 网络流

    #115. 无源汇有上下界可行流 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据   题 ...

  8. loj#115. 无源汇有上下界可行流

    \(\color{#0066ff}{ 题目描述 }\) 这是一道模板题. \(n\) 个点,\(m\) 条边,每条边 \(e\) 有一个流量下界 \(\text{lower}(e)\) 和流量上界 \ ...

  9. 【LOJ115】无源汇有上下界可行流(模板题)

    点此看题面 大致题意: 给你每条边的流量上下界,让你判断是否存在可行流.若有,则还需输出一个合法方案. 大致思路 首先,每条边既然有一个流量下界\(lower\),我们就强制它初始流量为\(lower ...

随机推荐

  1. Mysql 学习目录

    Mysql 目录 Mysql之路[第一篇]:Mysql基础 Mysql之路[第二篇]:Mysql 常用命令 Mysql之路[第三篇]:Python对Mysql的操作 Mysql之路[第四篇]:ORM ...

  2. Python Jquery学习

    jquery调用方法: $(css的选择器).操作函数 语法格式: 操作函数: html      修改内容 点击button键后,jquery就会变为bootstrap 当然里面也可以进行判断,实现 ...

  3. 【JavaScript 2—基础知识点】:数据类型

    导读:我发现不管是哪一门语言,都会先介绍其发展,语法规则,数据类型,流程控制等.那么,这次,就介绍一下JavaScript中的数据类型,有些看着眼熟,有些不熟.熟的也不是之前认识的,不熟的,也不见得就 ...

  4. 九度oj 题目1035:找出直系亲属

    题目描述:     如果A,B是C的父母亲,则A,B是C的parent,C是A,B的child,如果A,B是C的(外)祖父,祖母,则A,B是C的grandparent,C是A,B的grandchild ...

  5. xmpp 与服务器连接并身份验证成功

    *  XMPP的特点,所有的请求都是通过代理的方式实现的 * *  因为xmpp是经由网络服务器进行数据通讯的,因此所有的,因此所有的请求都是提交给服务器处理 * *  服务器处理完毕止呕,以代理的方 ...

  6. [luoguP3668] [USACO17OPEN]Modern Art 2 现代艺术2(栈)

    传送门 还是一个字——栈 然后加一大堆特判 至少我是这么做的 我的代码 #include <cstdio> #include <iostream> #define N 1000 ...

  7. 刷题总结——瞭望塔(bzoj1038)

    题目: Description 致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安.我们将H村抽象为一维的轮廓.如下图所示 我们可以用一条山的上方轮廓折线 ...

  8. P2015 二叉苹果树 (树形动规)

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...

  9. 【php wamp的配置】

  10. 虚拟机vmnet0、vmnet1和vmnet8的区别 虚拟网卡概述

    vmnet0,实际上就是一个虚拟的网桥 vmnet0,实际上就是一个虚拟的网桥,这个网桥有很若干个端口,一个端口用于连接你的Host,一个端口用于连接你的虚拟机,他们的位置是对等的,谁也不是谁的网关. ...