题目:

Description

A lattice point (xy) in the first quadrant (x and y are integers greater than or equal to 0), other than the origin, is visible from the origin if the line from (0, 0) to (xy) does not pass through any other lattice point. For example, the point (4, 2) is not visible since the line from the origin passes through (2, 1). The figure below shows the points (xy) with 0 ≤ xy ≤ 5 with lines from the origin to the visible points.

Write a program which, given a value for the size, N, computes the number of visible points (xy) with 0 ≤ xy ≤ N.

Input

The first line of input contains a single integer C (1 ≤ C ≤ 1000) which is the number of datasets that follow.

Each dataset consists of a single line of input containing a single integer N (1 ≤ N ≤ 1000), which is the size.

Output

For each dataset, there is to be one line of output consisting of: the dataset number starting at 1, a single space, the size, a single space and the number of visible points for that size.

Sample Input

4
2
4
5
231

Sample Output

1 2 5
2 4 13
3 5 21
4 231 32549

题解:

欧拉函数模板题。

心得:

感觉欧拉函数稍微考得隐晦点的就是可视点问题了···嗯就这样

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
using namespace std;
const int N=;
int phi[N],sum[N],n;
void pre()
{
for(int i=;i<N;i++)
phi[i]=i;
for(int i=;i<N;i++)
if(phi[i]==i)
for(int j=i;j<N;j+=i)
phi[j]=phi[j]*(i-)/i;
for(int i=;i<N;i++)
sum[i]=phi[i]+sum[i-];
}
int main()
{
//freopen("a.in","r",stdin);
pre();
scanf("%d",&n);
for(int i=;i<=n;i++)
{
int k;
scanf("%d",&k);
cout<<i<<" "<<k<<" "<<sum[k]*+<<endl;
}
return ;
}

算法复习——欧拉函数(poj3090)的更多相关文章

  1. Java实现 蓝桥杯 算法提高 欧拉函数(数学)

    试题 算法提高 欧拉函数 问题描述 老师出了一道难题,小酱不会做,请你编个程序帮帮他,奖金一瓶酱油: 从1-n中有多少个数与n互质? |||||╭══╮ ┌═════┐ ╭╯让路║═║酱油专用车║ ╰ ...

  2. Java实现 蓝桥杯VIP 算法提高 欧拉函数

    算法提高 欧拉函数 时间限制:1.0s 内存限制:512.0MB 说明 2016.4.5 已更新试题,请重新提交自己的程序. 问题描述 给定一个大于1,不超过2000000的正整数n,输出欧拉函数,p ...

  3. 欧拉函数,打表求欧拉函数poj3090

    欧拉函数 φ(n) 定义:[1,N]中与N互质的数的个数 //互质与欧拉函数 /* 求欧拉函数 按欧拉函数计算公式,只要分解质因数即可 */ int phi(int n){ int ans=n; ;i ...

  4. 算法总结之欧拉函数&中国剩余定理

    算法总结之欧拉函数&中国剩余定理 1.欧拉函数 概念:在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目. 通式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)( ...

  5. POJ3090 巧用欧拉函数 phi(x)

    POJ3090 给定一个坐标系范围 求不同的整数方向个数 分析: 除了三个特殊方向(y轴方向 x轴方向 (1,1)方向)其他方向的最小向量表示(x,y)必然互质 所以对欧拉函数前N项求和 乘2(关于( ...

  6. poj3090欧拉函数求和

    E - (例题)欧拉函数求和 Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:65536KB     ...

  7. POJ3090(SummerTrainingDay04-M 欧拉函数)

    Visible Lattice Points Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7450   Accepted: ...

  8. POJ3090 Visible Lattice Points 欧拉函数

    欧拉函数裸题,直接欧拉函数值乘二加一就行了.具体证明略,反正很简单. 题干: Description A lattice point (x, y) in the first quadrant (x a ...

  9. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

随机推荐

  1. 通过 Azure IoT 中心实现互联网设备数据的可视化分析

    本课程主要介绍了如何 在Azure 平台上借助 Azure IoT 中心, Azure 流分析,Web 应用, Azure 数据库等服务快速构建收集处理并可视化来自设备的数据流的应用, 包括项目背景介 ...

  2. HDU 1950 Bridging signals (LIS,O(nlogn))

    题意: 给一个数字序列,要求找到LIS,输出其长度. 思路: 扫一遍+二分,复杂度O(nlogn),空间复杂度O(n). 具体方法:增加一个数组,用d[i]表示长度为 i 的递增子序列的最后一个元素, ...

  3. (六)mybatis之构建SqlSessionFactory

    构建SqlSessionFactory 每个mybatis应用都是以SqlSessionFactory的实例为中心的.SqlSessionFactory的实例可以通过SqlSessionFactory ...

  4. 解决Genymotion Error: “Unable to load VirtualBox Engine” on Yosemite. VirtualBox installed

    Mac 环境,输入命令 sudo ln -s /usr/local/bin/VBoxManage /usr/bin/VBoxManage

  5. 讲课笔记3——CSS

    背景常见样式: width:600px; height:800px; background:   url(bg.jpg)  no-repeat  40px 20px   fixed  gray ; * ...

  6. Schur 三角化定理的推论

    将学习到什么 从 Schur 的酉三角化定理可以收获一批结果,在这一部分介绍重要的几个.   迹与行列式 相似矩阵具有相同的特征多项式, 从特征多项式一节中, 我们又知道,相似矩阵的迹以及行列式都是相 ...

  7. vue计算属性无法监听到数组内部变化

    计算属性可以帮助我们简化代码,做到实时更新,不用再自己添加function去修改data. 首先看一下计算属性的基本写法(摘自官网) var vm = new Vue({ el: '#demo', d ...

  8. C++ lvalue,prvalue,xvalue,glvalue和rvalue详解(from cppreference)

    General 每一个C++表达式(一个操作符和它的操作数,一个字面值,一个变量名等等)都代表着两个独立属性:类型+属性分类.在现代C++中 glvalue(泛左值) = lvalue (传统意义上的 ...

  9. Bootstrap 网格系统(Grid System)实例3

    Bootstrap 网格系统(Grid System)实例:堆叠水平 <!DOCTYPE html><html><head><meta http-equiv= ...

  10. JsonUtils工具类

    public class JsonUtils { public static void printTimeObject(Object obj, HttpServletResponse response ...