Bzoj2007 [Noi2010]海拔(平面图最短路)
2007: [Noi2010]海拔
Time Limit: 20 Sec Memory Limit: 552 MB
Submit: 2742 Solved: 1318
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
1
2
3
4
5
6
7
8
Sample Output
【样例说明】
样例数据见下图。
最理想情况下所有点的海拔如上图所示。
对于100%的数据:1 ≤ n ≤ 500,0 ≤ 流量 ≤ 1,000,000且所有流量均为整数。
显然我们只需要考虑0和1的分界线在何处即可。当然我们需要找到一些边集,把图分成两半,且权值和最小。这不就是最小割吗...所以直接把原图转成对偶图,然后跑dijkstra。
注意连边的时候考虑方向,我们不妨假定对偶图边经过的方向,左边海拔为0,右边海拔为1,然后只要算0到1的,所以就是正方向的权值。所以我们只需要把方向相反的两条边在对偶图中也构出方向相反的即可。
这样就可以了。
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
#include<queue>
#define N 507
using namespace std; int n;
int mp[N][N][];
int dis[N][N]; struct dist
{
int x,y,dis;
bool operator < (const dist b) const
{
return dis>b.dis;
}
};
priority_queue<dist>q;
int ans=1e9+;
void insert(int x,int y,int d)
{
if(d<dis[x][y])
{
dis[x][y]=d;
q.push((dist){x,y,d});
}
if(y==)ans=min(ans,d+mp[x][y][]);
if(x==n)ans=min(ans,d+mp[x+][y][]);
}
void Dij()
{
int i,j;
for(i=;i<=n;i++)
insert(,i,mp[][i][]);
for(j=;j<=n;j++)
insert(j,n,mp[j][n+][]);
while(!q.empty())
{
dist now=q.top();q.pop();
if(now.dis>dis[now.x][now.y])continue;
int x=now.x,y=now.y;
if(x>) insert(x-,y,now.dis+mp[now.x][now.y][]);
if(y>) insert(x,y-,now.dis+mp[now.x][now.y][]);
if(x<n) insert(x+,y,now.dis+mp[now.x+][now.y][]);
if(y<n) insert(x,y+,now.dis+mp[now.x][now.y+][]);
}
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n+;i++)
for(int j=;j<=n;j++)
scanf("%d",&mp[i][j][]);//从西到东
for(int i=;i<=n;i++)
for(int j=;j<=n+;j++)
scanf("%d",&mp[i][j][]);//从北到南
for(int i=;i<=n+;i++)
for(int j=;j<=n;j++)
scanf("%d",&mp[i][j][]);//从东到西
for(int i=;i<=n;i++)
for(int j=;j<=n+;j++)
scanf("%d",&mp[i][j][]);//从南到北
memset(dis,0x3f,sizeof dis);
Dij();
cout<<ans<<endl;
}
Bzoj2007 [Noi2010]海拔(平面图最短路)的更多相关文章
- [BZOJ2007][NOI2010]海拔(对偶图最短路)
首先确定所有点的海拔非0即1,问题转化成裸的平面图最小割问题,进而转化成对偶图最短路(同BZOJ1002). 这题的边是有向的,所以所有边顺时针旋转90度即可. 如下图(S和T的位置是反的). #in ...
- BZOJ2007 NOI2010 海拔 平面图转对偶图 最小割
题面太长啦,请诸位自行品尝—>海拔 分析: 这是我见过算法比较明显的最小割题目了,很明显对于某一条简单路径,海拔只会有一次变换. 而且我们要最终使变换海拔的边权值和最小. 我们发现变换海拔相当于 ...
- bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路)
bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路) 题目描述: bzoj luogu 题解时间: 首先考虑海拔待定点的$h$都应该是多少 很明显它们都是$0$或$1$,并且所 ...
- 【BZOJ2007】[Noi2010]海拔 对偶图最短路
[BZOJ2007][Noi2010]海拔 Description YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作 一个正方形,每一个区域也可看 ...
- BZOJ2007 [Noi2010]海拔 【平面图最小割转对偶图最短路】
题目链接 BZOJ2007 题解 这是裸题啊,,要是考试真的遇到就好了 明显是最小割,而且是有来回两个方向 那么原图所有向右的边转为对偶图向下的边 向左的边转为向上 向下转为向左 向上转为向右 然后跑 ...
- Luogu2046 NOI2010 海拔 平面图、最小割、最短路
传送门 首先一个不知道怎么证的结论:任意点的\(H\)只会是\(0\)或\(1\) 那么可以发现原题的本质就是一个最小割,左上角为\(S\),右下角为\(T\),被割开的两个部分就是\(H=0\)与\ ...
- P2046 [NOI2010]海拔 平面图转对偶图(最小割-》最短路)
$ \color{#0066ff}{ 题目描述 }$ YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作 一个正方形,每一个区域也可看作一个正方形. ...
- bzoj2007 NOI2010 海拔(对偶图)
80分(最小割)思路 先考虑如果没有题目中东南角为\(1\)那个限制的话会怎样. 那么只要让每个点的海拔都是\(0\)就行了.这样不论怎样走,最后的答案都是0. 然后再考虑那个东南角为\(1\)的限制 ...
- Bzoj2007 [Noi2010]海拔
Time Limit: 20 Sec Memory Limit: 552 MB Submit: 2380 Solved: 1130 Description YT市是一个规划良好的城市,城市被东西向 ...
随机推荐
- explian使用介绍
1).id列数字越大越先执行,如果说数字一样大,那么就从上往下依次执行,id列为null的就表是这是一个结果集,不需要使用它来进行查询. 2).select_type列常见的有:A:simple:表示 ...
- org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'requestMappingHandlerMapping' defined in class path resource
spring boot web项目运行时提示如下错误 org.springframework.beans.factory.BeanCreationException: Error creating b ...
- js 监听页面url锚点变化 window.onpopstate
window.onpopstate = function (event) { if (location.href.indexOf('#') == -1) { location.reload(); } ...
- nyoj-586-疯牛|poj-2456-Aggressive cows
http://acm.nyist.net/JudgeOnline/problem.php?pid=586 http://poj.org/problem?id=2456 解题思路:最大化最小值二分答案即 ...
- windows10 下安装、配置、启动mysql
下载mysql 可以自行去百度 或者 https://dev.mysql.com/downloads/mysql/5.7.html#downloads 解压mysql-5.7.26-winx64.zi ...
- hibernate的注解
1.many-to-one @ManyToOne @JoinColumn(name = "user_id") 2.many-to-many /** * 双向关联关系中,有且仅有一端 ...
- struts1标签库
Struts提供了五个标签库,即:HTML.Bean.Logic.Template和Nested. HTML标签 : 用来创建能够和Struts 框架和其他相应的HTML 标签交互的HTML 输入表单 ...
- IE(IE6/IE7/IE8)支持HTML5标签--20150216
让IE(ie6/ie7/ie8)支持HTML5元素,我们需要在HTML头部添加以下JavaScript,这是一个简单的document.createElement声明,利用条件注释针对IE来调用这个j ...
- (10)zabbix item key详解
1. 灵活的参数 参数位置可用接收任意参数则是灵活的.例如vfs.fs.size[*],”*”星号可以使用任意的参数,例如:vfs.fs.size[/]vfs.fs.size[/opt] 2. Key ...
- 前端Web框架的实现过程
一.Web框架的本质: 我们可以这样理解:所有的Web应用本质上就是一个socket服务端,而用户的浏览器就是一个socket客户端. 这样我们就可以自己实现Web框架了. 半成品自定义web框架 i ...