Problem Description
Frog fell into a maze. This maze is a rectangle containing N rows and M columns. Each grid in this maze contains a number, which is called the magic value. Frog now stays at grid (1, 1), and he wants to go to grid (N, M). For each step, he can go to either the grid right to his current location or the grid below his location. Formally, he can move from grid (x, y) to (x + 1, y) or (x, y +1), if the grid he wants to go exists.
Frog is a perfectionist, so he'd like to find the most
beautiful path. He defines the beauty of a path in the following way.
Let’s denote the magic values along a path from (1, 1) to (n, m) as A1,A2,…AN+M−1, and Aavg is the average value of all Ai. The beauty of the path is (N+M–1) multiplies the variance of the values:(N+M−1)∑N+M−1i=1(Ai−Aavg)2
In
Frog's opinion, the smaller, the better. A path with smaller beauty
value is more beautiful. He asks you to help him find the most beautiful
path.
 
Input
The first line of input contains a number T indicating the number of test cases (T≤50).
Each test case starts with a line containing two integers N and M (1≤N,M≤30). Each of the next N lines contains M non-negative integers, indicating the magic values. The magic values are no greater than 30.
 
Output
For each test case, output a single line consisting of “Case #X: Y”. X is the test case number starting from 1. Y is the minimum beauty value.
 
Sample Input
1
2 2
1 2
3 4
 
Sample Output
Case #1: 14
 
 
题目大意:在一个数字方格中,寻找一条从左上角到右下角的路径,使得路径上的数字方差最小。
题目分析:这是2015年合肥网络赛的一道比较简单的题目,赛时没有做出来,惭愧!这道题的一种解法是这样的,枚举路径上的数字和,使其变成数塔问题,递推求解。
 
代码如下:
# include<iostream>
# include<cstdio>
# include<cstring>
# include<algorithm>
using namespace std; double dp[35][35];
int mp[35][35],n,m; double DP(int eva)
{
double k=n+m-1.0;
dp[n-1][m-1]=(mp[n-1][m-1]-eva/k)*(mp[n-1][m-1]-eva/k);
for(int i=n-2;i>=0;--i)
dp[i][m-1]=(mp[i][m-1]-eva/k)*(mp[i][m-1]-eva/k)+dp[i+1][m-1];
for(int i=m-2;i>=0;--i)
dp[n-1][i]=(mp[n-1][i]-eva/k)*(mp[n-1][i]-eva/k)+dp[n-1][i+1];
for(int i=n-2;i>=0;--i)
for(int j=m-2;j>=0;--j)
dp[i][j]=(mp[i][j]-eva/k)*(mp[i][j]-eva/k)+min(dp[i+1][j],dp[i][j+1]);
return (n+m-1)*dp[0][0];
} int main()
{
int T,cas=0;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(int i=0;i<n;++i)
for(int j=0;j<m;++j)
scanf("%d",&mp[i][j]); double ans=1e10;
for(int i=0;i<=1770;++i)
ans=min(ans,DP(i));
printf("Case #%d: %.0lf\n",++cas,ans);
}
return 0;
}

  

HDU-5492 Find a path (枚举+DP)的更多相关文章

  1. hdu 5492 Find a path(dp+少量数学)2015 ACM/ICPC Asia Regional Hefei Online

    题意: 给出一个n*m的地图,要求从左上角(0, 0)走到右下角(n-1, m-1). 地图中每个格子中有一个值.然后根据这些值求出一个最小值. 这个最小值要这么求—— 这是我们从起点走到终点的路径, ...

  2. 2015合肥网络赛 HDU 5492 Find a path 动归

    HDU 5492 Find a path 题意:给你一个矩阵求一个路径使得 最小. 思路: 方法一:数据特别小,直接枚举权值和(n + m - 1) * aver,更新答案. 方法二:用f[i][j] ...

  3. HDU - 5492 Find a path(方差公式+dp)

    Find a path Frog fell into a maze. This maze is a rectangle containing NN rows and MM columns. Each ...

  4. HDU 5492 Find a path

    Find a path Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID ...

  5. 【动态规划】HDU 5492 Find a path (2015 ACM/ICPC Asia Regional Hefei Online)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5492 题目大意: 一个N*M的矩阵,一个人从(1,1)走到(N,M),每次只能向下或向右走.求(N+ ...

  6. hdu 3247 AC自动+状压dp+bfs处理

    Resource Archiver Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 100000/100000 K (Java/Ot ...

  7. HDU - 2290 Find the Path(最短路)

    HDU - 2290 Find the Path Time Limit: 5000MS   Memory Limit: 64768KB   64bit IO Format: %I64d & % ...

  8. HDU 1024 Max Sum Plus Plus --- dp+滚动数组

    HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...

  9. HDU 1231 最大连续子序列 --- 入门DP

    HDU 1231 题目大意以及解题思路见: HDU 1003题解,此题和HDU 1003只是记录的信息不同,处理完全相同. /* HDU 1231 最大连续子序列 --- 入门DP */ #inclu ...

  10. hdu 4778 Gems Fight! 博弈+状态dp+搜索

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4102743.html 题目链接:hdu 4778 Gems Fight! 博弈+状态dp+搜 ...

随机推荐

  1. Process Monitor分析某个应用行为

    1.打开Process Mointor 2.点击filter-->filter   在弹出的对话框中Architecture 下拉框,选择Process Name 填写要分析的应用程序名字. 点 ...

  2. rac数据库单连接报错ora-12537解决办法

    1.现象如下: C:\Users\Administrator.DBA-PC>sqlplus sys/oracle@192.168.100.33:1521/orcl as sys dba SQL* ...

  3. 使用pidstat查看进程资源使用情况

    简介 pidstat主要用于监控全部或指定进程占用系统资源的情况,如CPU,内存.设备IO.任务切换.线程等.pidstat首次运行时显示自系统启动开始的各项统计信息,之后运行pidstat将显示自上 ...

  4. 清空messages方法

    1.du -sh /var/log/messages 2.losf /var/log/messages 3.cat /dev/null > /var/log/messages 4.du -sh ...

  5. spring boot 打包方式 spring boot 整合mybaits REST services

    <build> <sourceDirectory>src/main/java</sourceDirectory> <plugins> <plugi ...

  6. mybatis-spring-boot-autoconfigure

    mybatis-spring-boot-autoconfigure – MyBatis Sring-BootStarter | Reference Documentation http://www.m ...

  7. Python爬虫scrapy-redis分布式实例(一)

    目标任务:将之前新浪网的Scrapy爬虫项目,修改为基于RedisSpider类的scrapy-redis分布式爬虫项目,将数据存入redis数据库. 一.item文件,和之前项目一样不需要改变 # ...

  8. Treasure Exploration---poj2594(传递闭包Floyd+最小路径覆盖)

    题目链接:http://poj.org/problem?id=2594 在外星上有n个点需要机器人去探险,有m条单向路径.问至少需要几个机器人才能遍历完所有的点,一个点可以被多个机器人经过(这就是和单 ...

  9. day13(JSTL和自定义标签&MVC模型&javaweb三层框架)

    day13 JSTL标签库(重点) 自定义标签(理解) MVC设计模式(重点中的重点) Java三层框架(重点中的重点) JSTL标签库   1 什么是JSTL JSTL是apache对EL表达式的扩 ...

  10. andorid ListView和GirdView 与ScrollView 冲突

    1.listview解决方法 public static void setListViewHeightBasedOnChildren(ListView listView) { if(listView ...