Problem Description
Frog fell into a maze. This maze is a rectangle containing N rows and M columns. Each grid in this maze contains a number, which is called the magic value. Frog now stays at grid (1, 1), and he wants to go to grid (N, M). For each step, he can go to either the grid right to his current location or the grid below his location. Formally, he can move from grid (x, y) to (x + 1, y) or (x, y +1), if the grid he wants to go exists.
Frog is a perfectionist, so he'd like to find the most
beautiful path. He defines the beauty of a path in the following way.
Let’s denote the magic values along a path from (1, 1) to (n, m) as A1,A2,…AN+M−1, and Aavg is the average value of all Ai. The beauty of the path is (N+M–1) multiplies the variance of the values:(N+M−1)∑N+M−1i=1(Ai−Aavg)2
In
Frog's opinion, the smaller, the better. A path with smaller beauty
value is more beautiful. He asks you to help him find the most beautiful
path.
 
Input
The first line of input contains a number T indicating the number of test cases (T≤50).
Each test case starts with a line containing two integers N and M (1≤N,M≤30). Each of the next N lines contains M non-negative integers, indicating the magic values. The magic values are no greater than 30.
 
Output
For each test case, output a single line consisting of “Case #X: Y”. X is the test case number starting from 1. Y is the minimum beauty value.
 
Sample Input
1
2 2
1 2
3 4
 
Sample Output
Case #1: 14
 
 
题目大意:在一个数字方格中,寻找一条从左上角到右下角的路径,使得路径上的数字方差最小。
题目分析:这是2015年合肥网络赛的一道比较简单的题目,赛时没有做出来,惭愧!这道题的一种解法是这样的,枚举路径上的数字和,使其变成数塔问题,递推求解。
 
代码如下:
# include<iostream>
# include<cstdio>
# include<cstring>
# include<algorithm>
using namespace std; double dp[35][35];
int mp[35][35],n,m; double DP(int eva)
{
double k=n+m-1.0;
dp[n-1][m-1]=(mp[n-1][m-1]-eva/k)*(mp[n-1][m-1]-eva/k);
for(int i=n-2;i>=0;--i)
dp[i][m-1]=(mp[i][m-1]-eva/k)*(mp[i][m-1]-eva/k)+dp[i+1][m-1];
for(int i=m-2;i>=0;--i)
dp[n-1][i]=(mp[n-1][i]-eva/k)*(mp[n-1][i]-eva/k)+dp[n-1][i+1];
for(int i=n-2;i>=0;--i)
for(int j=m-2;j>=0;--j)
dp[i][j]=(mp[i][j]-eva/k)*(mp[i][j]-eva/k)+min(dp[i+1][j],dp[i][j+1]);
return (n+m-1)*dp[0][0];
} int main()
{
int T,cas=0;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(int i=0;i<n;++i)
for(int j=0;j<m;++j)
scanf("%d",&mp[i][j]); double ans=1e10;
for(int i=0;i<=1770;++i)
ans=min(ans,DP(i));
printf("Case #%d: %.0lf\n",++cas,ans);
}
return 0;
}

  

HDU-5492 Find a path (枚举+DP)的更多相关文章

  1. hdu 5492 Find a path(dp+少量数学)2015 ACM/ICPC Asia Regional Hefei Online

    题意: 给出一个n*m的地图,要求从左上角(0, 0)走到右下角(n-1, m-1). 地图中每个格子中有一个值.然后根据这些值求出一个最小值. 这个最小值要这么求—— 这是我们从起点走到终点的路径, ...

  2. 2015合肥网络赛 HDU 5492 Find a path 动归

    HDU 5492 Find a path 题意:给你一个矩阵求一个路径使得 最小. 思路: 方法一:数据特别小,直接枚举权值和(n + m - 1) * aver,更新答案. 方法二:用f[i][j] ...

  3. HDU - 5492 Find a path(方差公式+dp)

    Find a path Frog fell into a maze. This maze is a rectangle containing NN rows and MM columns. Each ...

  4. HDU 5492 Find a path

    Find a path Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID ...

  5. 【动态规划】HDU 5492 Find a path (2015 ACM/ICPC Asia Regional Hefei Online)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5492 题目大意: 一个N*M的矩阵,一个人从(1,1)走到(N,M),每次只能向下或向右走.求(N+ ...

  6. hdu 3247 AC自动+状压dp+bfs处理

    Resource Archiver Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 100000/100000 K (Java/Ot ...

  7. HDU - 2290 Find the Path(最短路)

    HDU - 2290 Find the Path Time Limit: 5000MS   Memory Limit: 64768KB   64bit IO Format: %I64d & % ...

  8. HDU 1024 Max Sum Plus Plus --- dp+滚动数组

    HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...

  9. HDU 1231 最大连续子序列 --- 入门DP

    HDU 1231 题目大意以及解题思路见: HDU 1003题解,此题和HDU 1003只是记录的信息不同,处理完全相同. /* HDU 1231 最大连续子序列 --- 入门DP */ #inclu ...

  10. hdu 4778 Gems Fight! 博弈+状态dp+搜索

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4102743.html 题目链接:hdu 4778 Gems Fight! 博弈+状态dp+搜 ...

随机推荐

  1. Webservice实践(七)CXF 与Spring结合+tomcat发布

    上一节介绍了如何使用CXF 来发布服务,但是没有介绍使用web 容器来发布,很多项目需要用tomcat 这样的容器来发布.另外本节将介绍CXF 与spring 结合的方法. 一 目标: 1.利用spi ...

  2. Chinese_remainder_theorem

    https://en.wikipedia.org/wiki/Chinese_remainder_theorem 中国剩余定理 https://en.wikipedia.org/wiki/RSA_(cr ...

  3. The Rise of Database Sharding DATABASE SHARDING

    w玻璃碎片.0共享 http://www.agildata.com/database-sharding/ The Rise of Database Sharding The concept of Da ...

  4. linux 的nohup & 和daemon 总结(转)

    add by zhj:守护进程貌似跟nohup + &方式启动的进程差不多.都可以实现与终端的无关联.   原文:http://blog.csdn.net/lovemdx/article/de ...

  5. redis知识总汇

    redis基础 django-redis redis数据操作详解 redis持久化

  6. 省市县三级联动的SQL

    完整版见https://jadyer.github.io/ 首先是建表语句 CREATE TABLE `t_address_province` ( `id` INT AUTO_INCREMENT PR ...

  7. JavaScript类库汇总

    日期处理Moment.js    http://momentjs.cn/  http://momentjs.com/ nodejslinq,jslinq    http://jslinq.codepl ...

  8. docker——Etcd高可用键值对数据库

    一.简介 Etcd按照官方介绍: Etcd is a distributed, consistent key-value store for shared configuration and serv ...

  9. Hadoop mapreduce自定义分组RawComparator

    本文发表于本人博客. 今天接着上次[Hadoop mapreduce自定义排序WritableComparable]文章写,按照顺序那么这次应该是讲解自定义分组如何实现,关于操作顺序在这里不多说了,需 ...

  10. C++ Primer 5th Edition自学笔记(1)

    好吧,第一次写东西...如何下手呢...(请无视) -------------------------------------------------------------- Chapter 1. ...