Hadoop(20)-MapReduce框架原理-OutputFormat
1.outputFormat接口实现类

2.自定义outputFormat
步骤:
1). 定义一个类继承FileOutputFormat
2). 定义一个类继承RecordWrite,重写write方法
3. 案例
有一个log文件,将包含nty的输出到nty.log文件,其他的输出到other.log
http://www.baidu.com
http://www.google.com
http://cn.bing.com
http://www.nty.com
http://www.sohu.com
http://www.sina.com
http://www.sin2a.com
http://www.sin2desa.com
http://www.sindsafa.com
自定义类继承FileOutputFormat
package com.nty.outputFormat; import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; /**
* author nty
* date time 2018-12-12 19:28
*/
public class FilterOutputFormat extends FileOutputFormat<LongWritable, Text> { @Override
public RecordWriter<LongWritable, Text> getRecordWriter(TaskAttemptContext job) throws IOException, InterruptedException {
FilterRecordWrite frw = new FilterRecordWrite();
frw.init(job);
return frw;
}
}
自定义RecordWriter,重写write
package com.nty.outputFormat; import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; /**
* author nty
* date time 2018-12-12 19:29
*/
public class FilterRecordWrite extends RecordWriter<LongWritable, Text> { private FSDataOutputStream nty; private FSDataOutputStream other; //将job通过参数传递过来
public void init(TaskAttemptContext job) throws IOException { String outDir = job.getConfiguration().get(FileOutputFormat.OUTDIR); FileSystem fileSystem = FileSystem.get(job.getConfiguration()); nty = fileSystem.create(new Path(outDir + "/nty.log"));
other = fileSystem.create(new Path(outDir + "/other.log")); } @Override
public void write(LongWritable key, Text value) throws IOException, InterruptedException {
String address = value.toString() + "\r\n"; if(address.contains("nty")) {
nty.write(address.getBytes());
} else {
other.write(address.getBytes());
} } @Override
public void close(TaskAttemptContext context) throws IOException, InterruptedException {
//关流
IOUtils.closeStream(nty);
IOUtils.closeStream(other);
}
}
Driver类设置
package com.nty.outputFormat; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; /**
* author nty
* date time 2018-12-12 19:29
*/
public class FilterDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration configuration = new Configuration();
Job job = Job.getInstance(configuration); job.setJarByClass(FilterDriver.class); job.setOutputFormatClass(FilterOutputFormat.class); FileInputFormat.setInputPaths(job, new Path("d:\\Hadoop_test"));
FileOutputFormat.setOutputPath(job, new Path("d:\\Hadoop_test_out")); boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}
输出结果



Hadoop(20)-MapReduce框架原理-OutputFormat的更多相关文章
- [Hadoop] - 自定义Mapreduce InputFormat&OutputFormat
在MR程序的开发过程中,经常会遇到输入数据不是HDFS或者数据输出目的地不是HDFS的,MapReduce的设计已经考虑到这种情况,它为我们提供了两个组建,只需要我们自定义适合的InputFormat ...
- Hadoop(17)-MapReduce框架原理-MapReduce流程,Shuffle机制,Partition分区
MapReduce工作流程 1.准备待处理文件 2.job提交前生成一个处理规划 3.将切片信息job.split,配置信息job.xml和我们自己写的jar包交给yarn 4.yarn根据切片规划计 ...
- Hadoop(18)-MapReduce框架原理-WritableComparable排序和GroupingComparator分组
1.排序概述 2.排序分类 3.WritableComparable案例 这个文件,是大数据-Hadoop生态(12)-Hadoop序列化和源码追踪的输出文件,可以看到,文件根据key,也就是手机号进 ...
- Hadoop(16)-MapReduce框架原理-自定义FileInputFormat
1. 需求 将多个小文件合并成一个SequenceFile文件(SequenceFile文件是Hadoop用来存储二进制形式的key-value对的文件格式),SequenceFile里面存储着多个文 ...
- Hadoop(12)-MapReduce框架原理-Hadoop序列化和源码追踪
1.什么是序列化 2.为什么要序列化 3.为什么不用Java的序列化 4.自定义bean对象实现序列化接口(Writable) 在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在Hadoop ...
- Hadoop(13)-MapReduce框架原理--Job提交源码和切片源码解析
1.MapReduce的数据流 1) Input -> Mapper阶段 这一阶段的主要分工就是将文件切片和把文件转成K,V对 输入源是一个文件,经过InputFormat之后,到了Mapper ...
- MapReduce框架原理-OutputFormat工作原理
OutputFormat概述 OutputFormat主要是用来指定MR程序的最终的输出数据格式 . 默认使用的是TextOutputFormat,默认是将数据一行写一条数据,并且把数据放到指定的输出 ...
- Hadoop(19)-MapReduce框架原理-Combiner合并
1. Combiner概述 2. 自定义Combiner实现步骤 1). 定义一个Combiner继承Reducer,重写reduce方法 public class WordcountCombiner ...
- Hadoop(15)-MapReduce框架原理-FileInputFormat的实现类
1. TextInputFormat 2.KeyValueTextInputFormat 3. NLineInputFormat
随机推荐
- 性能优化小Tips
Performance Tips 这篇文章主要是介绍了一些小细节的优化技巧,当这些小技巧综合使用起来的时候,对于整个App的性能提升还是有作用的,只是不能较大幅度的提升性能而已.选择合适的算法与数据结 ...
- JavaScript性能优化小知识总结(转)
JavaScript的性能问题不容小觑,这就需要我们开发人员在编写JavaScript程序时多注意一些细节,本文非常详细的介绍了一下JavaScript性能优化方面的知识点,绝对是干货. 前言 一直在 ...
- matlab练习程序(随机直线采样)
我只是感觉好玩,写了这样一段程序. 原理就是先随机生成两个点,然后根据这两个点画直线,最后在直线上的像素保留,没在直线上的像素丢弃就行了. 最后生成了一幅含有很多空洞的图像. 当然,对含有空洞的图像是 ...
- GO Lang学习笔记 - 基础知识
Go lang Learn Note 标签(空格分隔): Go Go安装和Go目录 设置环境变量GOROOT和GOPATH,前者是go的安装目录,后者是开发工作目录.go get包只会将包下载到第一个 ...
- Uva 10534 波浪子序列
题目链接:https://vjudge.net/contest/160916#problem/C 题意: 求一个奇数长的子序列,前一半严格递增,后一半严格递减:O(nlogn) 分析: 再次复习一下L ...
- 布局方式-inline-block布局
.像文本一样排block元素 .没有清除浮动等问题 .需要处理间隙 一种方式 <style> .container{ width: 800px; height: 200px; fo ...
- 【转】有关onpropertychange事件
<div style="border:1px solid #fc0;height:24px;width:300px;" id="target">&l ...
- 未启用当前数据库的 SQL Server Service Broker,请为此数据库启用 Service Broker
ALTER DATABASE DATABASE_Name SET NEW_BROKER WITH ROLLBACK IMMEDIATE; ALTER DATABASE DATABASE_Name SE ...
- 随机森林算法-Deep Dive
0-写在前面 随机森林,指的是利用多棵树对样本进行训练并预测的一种分类器.该分类器最早由Leo Breiman和Adele Cutler提出.简单来说,是一种bagging的思想,采用bootstra ...
- Python基础—15-正则表达式
正则表达式 应用场景 特定规律字符串的查找替换切割等 邮箱格式.URL.IP等的校验 爬虫项目中,特定内容的提取 使用原则 只要是能够使用字符串函数解决的问题,就不要使用正则 正则的效率较低,还会降低 ...