hdu2829 四边形优化dp
Lawrence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1701 Accepted Submission(s): 737
You are to write a program to help Lawrence figure out how to best use his limited resources. You have some information from British Intelligence. First, the rail line is completely linear---there are no branches, no spurs. Next, British Intelligence has assigned a Strategic Importance to each depot---an integer from 1 to 100. A depot is of no use on its own, it only has value if it is connected to other depots. The Strategic Value of the entire railroad is calculated by adding up the products of the Strategic Values for every pair of depots that are connected, directly or indirectly, by the rail line. Consider this railroad:

Its Strategic Value is 4*5 + 4*1 + 4*2 + 5*1 + 5*2 + 1*2 = 49.
Now, suppose that Lawrence only has enough resources for one attack. He cannot attack the depots themselves---they are too well defended. He must attack the rail line between depots, in the middle of the desert. Consider what would happen if Lawrence attacked this rail line right in the middle:

The Strategic Value of the remaining railroad is 4*5 + 1*2 = 22. But, suppose Lawrence attacks between the 4 and 5 depots:

The Strategic Value of the remaining railroad is 5*1 + 5*2 + 1*2 = 17. This is Lawrence's best option.
Given a description of a railroad and the number of attacks that Lawrence can perform, figure out the smallest Strategic Value that he can achieve for that railroad.
4 5 1 2
4 2
4 5 1 2
0 0
2
#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
#define MAXN 1005
#define inf (__int64)1<<60
__int64 prime[MAXN],dp[MAXN][MAXN],kk[MAXN][MAXN],cost[MAXN][MAXN],val[MAXN][MAXN]; int main()
{
int n,m,i,j,k;
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==0&&m==0)
break;
for(i=1;i<=n;i++)
{
scanf("%I64d",&prime[i]);
}
memset(cost,0,sizeof(cost));
memset(val,0,sizeof(val));
for(i=1;i<n;i++)
for(j=i+1;j<=n;j++)
{
val[i][j]=val[i][j-1]+prime[i]*prime[j]; }
for( i=n-1;i>=1;--i)
{
for( j=i+1;j<=n;++j)
{
cost[i][j]=cost[i+1][j]+val[i][j];
//printf("cost %d %d\n",cost[i][j],ff(i,j));
}
}
for(i=0;i<=m;i++)
for(j=0;j<=n;j++)
{
dp[i][j]=inf;
}
for(i=1;i<n;i++)
{
dp[0][i]=cost[1][i];
kk[0][i]=1;
}
for(i=1;i<=m;i++)
{
kk[i][n+1]=n-1;
for(j=n;j>i;j--)
{
for(k=kk[i-1][j];k<=kk[i][j+1];k++)
{
int temp=dp[i-1][k]+cost[k+1][j];
if(temp<dp[i][j])
{
dp[i][j]=temp;
kk[i][j]=k;
}
}
}
}
printf("%I64d\n",dp[m][n]);
}
return 0;
}
hdu2829 四边形优化dp的更多相关文章
- HDU 2829 Lawrence(四边形优化DP O(n^2))
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 题目大意:有一段铁路有n个站,每个站可以往其他站运送粮草,现在要炸掉m条路使得粮草补给最小,粮草 ...
- HDOJ 3516 Tree Construction 四边形优化dp
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=3516 题意: 大概就是给你个下凸包的左侧,然后让你用平行于坐标轴的线段构造一棵树,并且这棵树的总曼哈顿 ...
- 四边形优化dp
理解: http://blog.renren.com/share/263498909/1064362501 http://www.cnblogs.com/ronaflx/archive/2011/03 ...
- [NOI2009]诗人小G 四边形优化DP
题目传送门 f[i] = min(f[j] + val(i,j); 其中val(i,j) 满足 四边形dp策略. 代码: #include<bits/stdc++.h> using nam ...
- zoj 2860 四边形优化dp
Breaking Strings Time Limit: 2 Seconds Memory Limit: 65536 KB A certain string-processing lan ...
- HDU3507 Print Article(斜率优化dp)
前几天做多校,知道了这世界上存在dp的优化这样的说法,了解了四边形优化dp,所以今天顺带做一道典型的斜率优化,在百度打斜率优化dp,首先弹出来的就是下面这个网址:http://www.cnblogs. ...
- hdu 2829 Lawrence(四边形不等式优化dp)
T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...
- BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】
题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...
- HDU 3506 (环形石子合并)区间dp+四边形优化
Monkey Party Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)Tot ...
随机推荐
- iOS 全局变量设置的几种方式~
在iOS开发过程中关于全局变量的几个方法 1. 在APPDelegate中声明并初始化全局变量.AppDelegate可以在整个应用程序中调用,在其他页面中可以使用代码段获取AppDelegate的全 ...
- web上传组件
uploadify jquery插件. common-fileipload; common-io ;jar
- .NET的PE文件结构篇(转)
一.开篇 开篇我要讲述一个关于PE文件结构的文章,这篇文章动手能力比较强,希望大家能够动手进行操作,这边文章篇幅有可能会长一些,为了方便大家阅读我可以将其分为几个部分进行讲解,主要分为以下几个部分: ...
- Python基础(5)_文件操作
一.文件处理流程 打开文件,得到文件句柄并赋值给一个变量 通过句柄对文件进行操作 关闭文件 二.文件打开模式 打开文件时,需要指定文件路径和以何等方式打开文件,打开后,即可获取该文件句柄,日后通过此文 ...
- Spring - IoC(1): Spring 容器
BeanFactory & ApplicationContext org.springframework.beans.factory.BeanFactory 是最基本的 Spring 容器接口 ...
- codefoeces problem 671D——贪心+启发式合并+平衡树
D. Roads in Yusland Mayor of Yusland just won the lottery and decided to spent money on something go ...
- 1210笔记//关于导航实例-QQ空间//导航实例-storyboard实现//控制器的生命周期//控制器的生命周期方法
一.利用storyboard完成导航1.storyboard中用来跳转的每一根线 都是 一个 UIStoryboardSegue对象1> 自动跳转 (从 某个按钮 拖线到 下一个目的控制器) ...
- [bzoj1031][JSOI2007]字符加密Cipher——后缀数组
Brief Description 给定一个长度为n的字符串,你需要对其进行加密. 把字符串围成一个环 显然从任意一个位置开始都可以有一个长度为n的串 把产生的n个串按字典序排序,把这n个串的最后一个 ...
- 说出JAVA中一些常用的类,包,接口,请各举5个~~~
类:1.java.lang.Object2.java.lang.String3.java.lang.System4.java.io.file5.java.io.FileInputStream6.jav ...
- Django【进阶】
FBV和CBV http://www.cnblogs.com/lucaq/p/7565560.html 中间件 http://www.cnblogs.com/lucaq/p/7581234.html ...