Lawrence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1701    Accepted Submission(s): 737

Problem Description
T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in the Arabian theater and led a group of Arab nationals in guerilla strikes against the Ottoman Empire. His primary targets were the railroads. A highly fictionalized version of his exploits was presented in the blockbuster movie, "Lawrence of Arabia".

You are to write a program to help Lawrence figure out how to best use his limited resources. You have some information from British Intelligence. First, the rail line is completely linear---there are no branches, no spurs. Next, British Intelligence has assigned a Strategic Importance to each depot---an integer from 1 to 100. A depot is of no use on its own, it only has value if it is connected to other depots. The Strategic Value of the entire railroad is calculated by adding up the products of the Strategic Values for every pair of depots that are connected, directly or indirectly, by the rail line. Consider this railroad:
 

Its Strategic Value is 4*5 + 4*1 + 4*2 + 5*1 + 5*2 + 1*2 = 49.

Now, suppose that Lawrence only has enough resources for one attack. He cannot attack the depots themselves---they are too well defended. He must attack the rail line between depots, in the middle of the desert. Consider what would happen if Lawrence attacked this rail line right in the middle:
 

The Strategic Value of the remaining railroad is 4*5 + 1*2 = 22. But, suppose Lawrence attacks between the 4 and 5 depots:
 

The Strategic Value of the remaining railroad is 5*1 + 5*2 + 1*2 = 17. This is Lawrence's best option.

Given a description of a railroad and the number of attacks that Lawrence can perform, figure out the smallest Strategic Value that he can achieve for that railroad.
 

 
Input
There will be several data sets. Each data set will begin with a line with two integers, n and m. n is the number of depots on the railroad (1≤n≤1000), and m is the number of attacks Lawrence has resources for (0≤m<n). On the next line will be n integers, each from 1 to 100, indicating the Strategic Value of each depot in order. End of input will be marked by a line with n=0 and m=0, which should not be processed.
 
Output
For each data set, output a single integer, indicating the smallest Strategic Value for the railroad that Lawrence can achieve with his attacks. Output each integer in its own line.
 
Sample Input
4 1
4 5 1 2
4 2
4 5 1 2
0 0
 
Sample Output
17
2
初始化为2的60次方才行,这里错了好多次,还要int64才行,唉这里,好坑!看看题目,明显有dp[i][j]=min(dp[i-1][k]+cos(k,j))
这样,用一个四边形不等式就可以优化了,注意,这里的cost,也可以用dp求出来,因为有很多的共同因子啊,这样才能a了去!
怎么求cost呢?明显cost[i][j]是由cost[i+1][j]+一个第i个因子和(i+1,j)的所有的积的和(记作val[i][j]),那么怎么求val[i][j]呢?
明显val[i][j]是由val[i][j-1]+第i数和第j个数的积!
#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
#define MAXN 1005
#define inf (__int64)1<<60
__int64 prime[MAXN],dp[MAXN][MAXN],kk[MAXN][MAXN],cost[MAXN][MAXN],val[MAXN][MAXN]; int main()
{
int n,m,i,j,k;
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==0&&m==0)
break;
for(i=1;i<=n;i++)
{
scanf("%I64d",&prime[i]);
}
memset(cost,0,sizeof(cost));
memset(val,0,sizeof(val));
for(i=1;i<n;i++)
for(j=i+1;j<=n;j++)
{
val[i][j]=val[i][j-1]+prime[i]*prime[j]; }
for( i=n-1;i>=1;--i)
{
for( j=i+1;j<=n;++j)
{
cost[i][j]=cost[i+1][j]+val[i][j];
//printf("cost %d %d\n",cost[i][j],ff(i,j));
}
}
for(i=0;i<=m;i++)
for(j=0;j<=n;j++)
{
dp[i][j]=inf;
}
for(i=1;i<n;i++)
{
dp[0][i]=cost[1][i];
kk[0][i]=1;
}
for(i=1;i<=m;i++)
{
kk[i][n+1]=n-1;
for(j=n;j>i;j--)
{
for(k=kk[i-1][j];k<=kk[i][j+1];k++)
{
int temp=dp[i-1][k]+cost[k+1][j];
if(temp<dp[i][j])
{
dp[i][j]=temp;
kk[i][j]=k;
}
}
}
}
printf("%I64d\n",dp[m][n]);
}
return 0;
}

hdu2829 四边形优化dp的更多相关文章

  1. HDU 2829 Lawrence(四边形优化DP O(n^2))

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 题目大意:有一段铁路有n个站,每个站可以往其他站运送粮草,现在要炸掉m条路使得粮草补给最小,粮草 ...

  2. HDOJ 3516 Tree Construction 四边形优化dp

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=3516 题意: 大概就是给你个下凸包的左侧,然后让你用平行于坐标轴的线段构造一棵树,并且这棵树的总曼哈顿 ...

  3. 四边形优化dp

    理解: http://blog.renren.com/share/263498909/1064362501 http://www.cnblogs.com/ronaflx/archive/2011/03 ...

  4. [NOI2009]诗人小G 四边形优化DP

    题目传送门 f[i] = min(f[j] + val(i,j); 其中val(i,j) 满足 四边形dp策略. 代码: #include<bits/stdc++.h> using nam ...

  5. zoj 2860 四边形优化dp

    Breaking Strings Time Limit: 2 Seconds        Memory Limit: 65536 KB A certain string-processing lan ...

  6. HDU3507 Print Article(斜率优化dp)

    前几天做多校,知道了这世界上存在dp的优化这样的说法,了解了四边形优化dp,所以今天顺带做一道典型的斜率优化,在百度打斜率优化dp,首先弹出来的就是下面这个网址:http://www.cnblogs. ...

  7. hdu 2829 Lawrence(四边形不等式优化dp)

    T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...

  8. BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】

    题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...

  9. HDU 3506 (环形石子合并)区间dp+四边形优化

    Monkey Party Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Tot ...

随机推荐

  1. web上传组件

    uploadify  jquery插件. common-fileipload; common-io ;jar

  2. salt搭建lamp架构

    install_httpd: pkg.installed: - name: httpd httpd_running: service.running: - name: httpd - enable: ...

  3. RPC-Thrift(一)

    一个简单例子 IDL文件如下,详细的IDL语法参考官方文档http://thrift.apache.org/docs/idl. 通过代码生成工具得到两个文件:HelloService.java和Res ...

  4. java深入解析

    具体内容安排如下: Java Collections Framework概览 对Java Collections Framework,以及Java语言特性做出基本介绍. Java ArrayList源 ...

  5. noip2013 提高组

    T1 转圈游戏 题目传送门 果不其然 第一题还是模拟题 一波快速幂解决问题 #include<cstdio> #include<cstring> #include<alg ...

  6. 【比赛】百度之星2017 初赛Round B

    第一题 题意:给定n*m网络,定义两个棋子在同行同列则相互攻击,同时要求两个棋子的行和列不能一小一大,求满足条件的最大摆放的方案数. 题解:ans=C(max(n,m),min(n,m)),就是在ma ...

  7. [object-c 2.0 程序设计]object-c file handle (二)

    // // main.m // cmdTry // // Created by Calos Chen on 2017/8/21. // Copyright © 2017年 Calos Chen. Al ...

  8. Local Authentication Using Challenge Response with Yubikey for CentOS 7

    Connect Yubikey  ,then initialize YubiKey slot 2: ykpersonalize -2 -ochal-resp -ochal-hmac -ohmac-lt ...

  9. Django-随机验证码

    Python生成随机验证码,需要使用PIL模块. 安装: 1 pip3 install pillow 基本使用 1. 创建图片 from PIL import Image img = Image.ne ...

  10. UNREFERENCED_PARAMETER()的作用

    告诉编译器,已经使用了该变量,不必警告. 在VC编译器下,当你声明了一个变量,而没有使用时,编译器就会报警告: “warning C4100: ''XXXX'' : unreferenced form ...