Lawrence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1701    Accepted Submission(s): 737

Problem Description
T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in the Arabian theater and led a group of Arab nationals in guerilla strikes against the Ottoman Empire. His primary targets were the railroads. A highly fictionalized version of his exploits was presented in the blockbuster movie, "Lawrence of Arabia".

You are to write a program to help Lawrence figure out how to best use his limited resources. You have some information from British Intelligence. First, the rail line is completely linear---there are no branches, no spurs. Next, British Intelligence has assigned a Strategic Importance to each depot---an integer from 1 to 100. A depot is of no use on its own, it only has value if it is connected to other depots. The Strategic Value of the entire railroad is calculated by adding up the products of the Strategic Values for every pair of depots that are connected, directly or indirectly, by the rail line. Consider this railroad:
 

Its Strategic Value is 4*5 + 4*1 + 4*2 + 5*1 + 5*2 + 1*2 = 49.

Now, suppose that Lawrence only has enough resources for one attack. He cannot attack the depots themselves---they are too well defended. He must attack the rail line between depots, in the middle of the desert. Consider what would happen if Lawrence attacked this rail line right in the middle:
 

The Strategic Value of the remaining railroad is 4*5 + 1*2 = 22. But, suppose Lawrence attacks between the 4 and 5 depots:
 

The Strategic Value of the remaining railroad is 5*1 + 5*2 + 1*2 = 17. This is Lawrence's best option.

Given a description of a railroad and the number of attacks that Lawrence can perform, figure out the smallest Strategic Value that he can achieve for that railroad.
 

 
Input
There will be several data sets. Each data set will begin with a line with two integers, n and m. n is the number of depots on the railroad (1≤n≤1000), and m is the number of attacks Lawrence has resources for (0≤m<n). On the next line will be n integers, each from 1 to 100, indicating the Strategic Value of each depot in order. End of input will be marked by a line with n=0 and m=0, which should not be processed.
 
Output
For each data set, output a single integer, indicating the smallest Strategic Value for the railroad that Lawrence can achieve with his attacks. Output each integer in its own line.
 
Sample Input
4 1
4 5 1 2
4 2
4 5 1 2
0 0
 
Sample Output
17
2
初始化为2的60次方才行,这里错了好多次,还要int64才行,唉这里,好坑!看看题目,明显有dp[i][j]=min(dp[i-1][k]+cos(k,j))
这样,用一个四边形不等式就可以优化了,注意,这里的cost,也可以用dp求出来,因为有很多的共同因子啊,这样才能a了去!
怎么求cost呢?明显cost[i][j]是由cost[i+1][j]+一个第i个因子和(i+1,j)的所有的积的和(记作val[i][j]),那么怎么求val[i][j]呢?
明显val[i][j]是由val[i][j-1]+第i数和第j个数的积!
#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
#define MAXN 1005
#define inf (__int64)1<<60
__int64 prime[MAXN],dp[MAXN][MAXN],kk[MAXN][MAXN],cost[MAXN][MAXN],val[MAXN][MAXN]; int main()
{
int n,m,i,j,k;
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==0&&m==0)
break;
for(i=1;i<=n;i++)
{
scanf("%I64d",&prime[i]);
}
memset(cost,0,sizeof(cost));
memset(val,0,sizeof(val));
for(i=1;i<n;i++)
for(j=i+1;j<=n;j++)
{
val[i][j]=val[i][j-1]+prime[i]*prime[j]; }
for( i=n-1;i>=1;--i)
{
for( j=i+1;j<=n;++j)
{
cost[i][j]=cost[i+1][j]+val[i][j];
//printf("cost %d %d\n",cost[i][j],ff(i,j));
}
}
for(i=0;i<=m;i++)
for(j=0;j<=n;j++)
{
dp[i][j]=inf;
}
for(i=1;i<n;i++)
{
dp[0][i]=cost[1][i];
kk[0][i]=1;
}
for(i=1;i<=m;i++)
{
kk[i][n+1]=n-1;
for(j=n;j>i;j--)
{
for(k=kk[i-1][j];k<=kk[i][j+1];k++)
{
int temp=dp[i-1][k]+cost[k+1][j];
if(temp<dp[i][j])
{
dp[i][j]=temp;
kk[i][j]=k;
}
}
}
}
printf("%I64d\n",dp[m][n]);
}
return 0;
}

hdu2829 四边形优化dp的更多相关文章

  1. HDU 2829 Lawrence(四边形优化DP O(n^2))

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 题目大意:有一段铁路有n个站,每个站可以往其他站运送粮草,现在要炸掉m条路使得粮草补给最小,粮草 ...

  2. HDOJ 3516 Tree Construction 四边形优化dp

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=3516 题意: 大概就是给你个下凸包的左侧,然后让你用平行于坐标轴的线段构造一棵树,并且这棵树的总曼哈顿 ...

  3. 四边形优化dp

    理解: http://blog.renren.com/share/263498909/1064362501 http://www.cnblogs.com/ronaflx/archive/2011/03 ...

  4. [NOI2009]诗人小G 四边形优化DP

    题目传送门 f[i] = min(f[j] + val(i,j); 其中val(i,j) 满足 四边形dp策略. 代码: #include<bits/stdc++.h> using nam ...

  5. zoj 2860 四边形优化dp

    Breaking Strings Time Limit: 2 Seconds        Memory Limit: 65536 KB A certain string-processing lan ...

  6. HDU3507 Print Article(斜率优化dp)

    前几天做多校,知道了这世界上存在dp的优化这样的说法,了解了四边形优化dp,所以今天顺带做一道典型的斜率优化,在百度打斜率优化dp,首先弹出来的就是下面这个网址:http://www.cnblogs. ...

  7. hdu 2829 Lawrence(四边形不等式优化dp)

    T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...

  8. BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】

    题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...

  9. HDU 3506 (环形石子合并)区间dp+四边形优化

    Monkey Party Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Tot ...

随机推荐

  1. Python基础(5)_文件操作

    一.文件处理流程 打开文件,得到文件句柄并赋值给一个变量 通过句柄对文件进行操作 关闭文件 二.文件打开模式 打开文件时,需要指定文件路径和以何等方式打开文件,打开后,即可获取该文件句柄,日后通过此文 ...

  2. 【poj3734】矩阵乘法

    题解: 若当前有i个格子.2个是偶数的方案数为a[i]1个是偶数的方案数为b[i]0个是偶数的方案数为c[i] a[i+1]=2*a[i](i+1染成黄或蓝)+b[i](把奇数变为偶数)b[i+1]= ...

  3. bzoj 1083 最小生成树

    裸的最小生成树. /************************************************************** Problem: User: BLADEVIL Lan ...

  4. 包与time,datetime,random,sys,shutil 模块

    一.包 包是什么? 包是一种通过使用‘.模块名’来组织python模块名称空间的方式. 注意: 1. 在python3中,即使包下没有__init__.py文件,import 包仍然不会报错,而在py ...

  5. Flask 基础知识一

    Flask是一个基于Python开发并且依赖jinja2模板和Werkzeug WSGI服务的一个微型框架,对于Werkzeug本质是Socket服务端,其用于接收http请求并对请求进行预处理,然后 ...

  6. vCard

    vCard 在翻阅dottoro的时候,在附录(appendix)的js部分,注意到一个叫vCard的部分,能单独列出来,可能是比较重要的,至少是比较独立的部分,但是以前从未听说或者了解过这一部分,如 ...

  7. hammer.js触摸,手指缩放等许多手势操作

    使用方法: 插件描述:Hammer.js是一个开源的,轻量级的javascript库,它可以在不需要依赖其他东西的情况下识别触摸,鼠标事件. <script src="http://e ...

  8. 串口通讯超时的设置与含义(COMMTIMEOUTS)

    COMMTIMEOUTS:COMMTIMEOUTS主要用于串口超时参数设置.COMMTIMEOUTS结构如下: typedef struct _COMMTIMEOUTS { DWORD ReadInt ...

  9. 生产环境安装centos时的磁盘规划

    一般来说,分区要按照公司领导的要求来执行.但是如果没有要求,一般按照下面的方法进行磁盘规划. /boot分区200M: swap分区分内存的2倍.如果内存大于等于8G,那么swap分8G即可: /分区 ...

  10. CSS选择器及其权重

    #转载请留言联系 1.标签选择器 标签选择器,此种选择器影响范围大,一般用来做一些通用设置,或用在层级选择器中.举例: div{color:red} ...... <div>这是第一个di ...