Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called a reduced proper fraction.

If we list the set of reduced proper fractions for d  8 in ascending order of size, we get:

1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8

It can be seen that there are 3 fractions between 1/3 and 1/2.

How many fractions lie between 1/3 and 1/2 in the sorted set of reduced proper fractions for d  12,000?

题目大意:

考虑分数 n/d, 其中n 和 d 是正整数。如果 nd 并且最大公约数 HCF(n,d)=1, 它被称作一个最简真分数。

如果我们将d  8的最简真分数按照大小的升序列出来,我们得到:

1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8

可以看出1/3和1/2之间共有3个分数。

在d  12,000的升序真分数列表中,1/3和1/2之间有多少个分数?

//(Problem 73)Counting fractions in a range
// Completed on Wed, 19 Feb 2014, 16:34
// Language: C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
#define N 12000 int gcd(int a, int b) //求最大公约数函数
{
int r;
while(b) {
r = a % b;
a = b;
b = r;
}
return a;
} void solve()
{
int a, b, i, j, ans;
ans = ;
for(i = ; i <= N; i++) {
a = i / ; b = i / ;
for(j = a + ; j < b + ; j++) {
if(gcd(i, j) == )
ans++;
}
}
printf("%d\n", ans);
} int main()
{
solve();
return ;
}
Answer:
7295372

(Problem 73)Counting fractions in a range的更多相关文章

  1. (Problem 72)Counting fractions

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  2. (Problem 33)Digit canceling fractions

    The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplif ...

  3. (Problem 35)Circular primes

    The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, ...

  4. (Problem 57)Square root convergents

    It is possible to show that the square root of two can be expressed as an infinite continued fractio ...

  5. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  6. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  7. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  8. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  9. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

随机推荐

  1. iOS 处理方法中的可变參数

    ## iOS 处理方法中的可变參数 近期写了一个自己定义的对话框的demo,想模仿系统的UIAlertView的实现方式.对处理可变參数的时候,遇到了小问题,于是谷歌了一下.写下了处理问题的方法.记录 ...

  2. Cocos2D-x权威指南:核心类成员CCNode

    节点类(CCNode)是Cocos2D-x中的主要类,继承自CCObject.继承关系如图3-2所看到的. 不论什么须要画在屏幕上的对象都是节点类. 最经常使用的节点类包含场景类(CCScene).布 ...

  3. 高效的SQLSERVER分页查询(推荐)

    Sqlserver数据库分页查询一直是Sqlserver的短板,闲来无事,想出几种方法,假设有表ARTICLE,字段ID.YEAR...(其他省略),数据53210条(客户真实数据,量不大),分页查询 ...

  4. .Net 利用消息在进程间通讯实现进程互操作

    有时候我们会遇到需要在两个进程间通过某种方式实现互操作,方法有很多,例如你可以尝试让两个进程持续监视一个外部文件,由此文件记录各自进程的数据:还有可以使用网络端口实现进程间通讯.共享一片内存区域记录及 ...

  5. C++ DLL注册

    今天项目中需要用C++实现对几个DLL文件的注册,查了许多资料,总结如下: #include <SHLWAPI.H> #pragma region DLL 注册与反注册 add by wh ...

  6. 简单的Cookie登录

    登录页前台代码 <form id="form1" action ="" method="post"> <input typ ...

  7. SPFile上传文件到文档库

    , dataLen);            SPSite sps = SPControl.GetContextSite(Context);            sps.AllowUnsafeUpd ...

  8. 全球最快的JS模板引擎

    废话不多说,先上测试: 亲测请访问:[在线测试地址]单次结果不一定准确,请多测几次. tppl 的编译渲染速度是著名的 jQuery 作者 John Resig 开发的 tmpl 的 43 倍!与第二 ...

  9. IE 11 无法访问某些不兼容性视图的解决方法

    今天下午部署公司的项目时,用IE 11只能加载到JSP页面的静态元素,其中下拉文本框的信息获取不到, 后来,发现是IE 11不兼容的原因,于是,在菜单条“工具”——“兼容性视图设置”,将不兼容页面的网 ...

  10. Windows下提升进程权限(转)

    from: http://www.oschina.net/code/snippet_222150_19533 windows的每个用户登录系统后,系统会产生一个访问令牌(access token) , ...