(Problem 73)Counting fractions in a range
Consider the fraction, n/d, where n and d are positive integers. If n
d and HCF(n,d)=1, it is called a reduced proper fraction.
If we list the set of reduced proper fractions for d
8 in ascending order of size, we get:
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
It can be seen that there are 3 fractions between 1/3 and 1/2.
How many fractions lie between 1/3 and 1/2 in the sorted set of reduced proper fractions for d
12,000?
题目大意:
考虑分数 n/d, 其中n 和 d 是正整数。如果 n
d 并且最大公约数 HCF(n,d)=1, 它被称作一个最简真分数。
如果我们将d
8的最简真分数按照大小的升序列出来,我们得到:
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
可以看出1/3和1/2之间共有3个分数。
在d
12,000的升序真分数列表中,1/3和1/2之间有多少个分数?
//(Problem 73)Counting fractions in a range
// Completed on Wed, 19 Feb 2014, 16:34
// Language: C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
#define N 12000 int gcd(int a, int b) //求最大公约数函数
{
int r;
while(b) {
r = a % b;
a = b;
b = r;
}
return a;
} void solve()
{
int a, b, i, j, ans;
ans = ;
for(i = ; i <= N; i++) {
a = i / ; b = i / ;
for(j = a + ; j < b + ; j++) {
if(gcd(i, j) == )
ans++;
}
}
printf("%d\n", ans);
} int main()
{
solve();
return ;
}
|
Answer:
|
7295372 |
(Problem 73)Counting fractions in a range的更多相关文章
- (Problem 72)Counting fractions
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
- (Problem 33)Digit canceling fractions
The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplif ...
- (Problem 35)Circular primes
The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, ...
- (Problem 57)Square root convergents
It is possible to show that the square root of two can be expressed as an infinite continued fractio ...
- (Problem 42)Coded triangle numbers
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...
- (Problem 41)Pandigital prime
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...
- (Problem 70)Totient permutation
Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...
- (Problem 74)Digit factorial chains
The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...
- (Problem 46)Goldbach's other conjecture
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...
随机推荐
- iOS 处理方法中的可变參数
## iOS 处理方法中的可变參数 近期写了一个自己定义的对话框的demo,想模仿系统的UIAlertView的实现方式.对处理可变參数的时候,遇到了小问题,于是谷歌了一下.写下了处理问题的方法.记录 ...
- Cocos2D-x权威指南:核心类成员CCNode
节点类(CCNode)是Cocos2D-x中的主要类,继承自CCObject.继承关系如图3-2所看到的. 不论什么须要画在屏幕上的对象都是节点类. 最经常使用的节点类包含场景类(CCScene).布 ...
- 高效的SQLSERVER分页查询(推荐)
Sqlserver数据库分页查询一直是Sqlserver的短板,闲来无事,想出几种方法,假设有表ARTICLE,字段ID.YEAR...(其他省略),数据53210条(客户真实数据,量不大),分页查询 ...
- .Net 利用消息在进程间通讯实现进程互操作
有时候我们会遇到需要在两个进程间通过某种方式实现互操作,方法有很多,例如你可以尝试让两个进程持续监视一个外部文件,由此文件记录各自进程的数据:还有可以使用网络端口实现进程间通讯.共享一片内存区域记录及 ...
- C++ DLL注册
今天项目中需要用C++实现对几个DLL文件的注册,查了许多资料,总结如下: #include <SHLWAPI.H> #pragma region DLL 注册与反注册 add by wh ...
- 简单的Cookie登录
登录页前台代码 <form id="form1" action ="" method="post"> <input typ ...
- SPFile上传文件到文档库
, dataLen); SPSite sps = SPControl.GetContextSite(Context); sps.AllowUnsafeUpd ...
- 全球最快的JS模板引擎
废话不多说,先上测试: 亲测请访问:[在线测试地址]单次结果不一定准确,请多测几次. tppl 的编译渲染速度是著名的 jQuery 作者 John Resig 开发的 tmpl 的 43 倍!与第二 ...
- IE 11 无法访问某些不兼容性视图的解决方法
今天下午部署公司的项目时,用IE 11只能加载到JSP页面的静态元素,其中下拉文本框的信息获取不到, 后来,发现是IE 11不兼容的原因,于是,在菜单条“工具”——“兼容性视图设置”,将不兼容页面的网 ...
- Windows下提升进程权限(转)
from: http://www.oschina.net/code/snippet_222150_19533 windows的每个用户登录系统后,系统会产生一个访问令牌(access token) , ...