Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called a reduced proper fraction.

If we list the set of reduced proper fractions for d  8 in ascending order of size, we get:

1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8

It can be seen that there are 3 fractions between 1/3 and 1/2.

How many fractions lie between 1/3 and 1/2 in the sorted set of reduced proper fractions for d  12,000?

题目大意:

考虑分数 n/d, 其中n 和 d 是正整数。如果 nd 并且最大公约数 HCF(n,d)=1, 它被称作一个最简真分数。

如果我们将d  8的最简真分数按照大小的升序列出来,我们得到:

1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8

可以看出1/3和1/2之间共有3个分数。

在d  12,000的升序真分数列表中,1/3和1/2之间有多少个分数?

//(Problem 73)Counting fractions in a range
// Completed on Wed, 19 Feb 2014, 16:34
// Language: C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
#define N 12000 int gcd(int a, int b) //求最大公约数函数
{
int r;
while(b) {
r = a % b;
a = b;
b = r;
}
return a;
} void solve()
{
int a, b, i, j, ans;
ans = ;
for(i = ; i <= N; i++) {
a = i / ; b = i / ;
for(j = a + ; j < b + ; j++) {
if(gcd(i, j) == )
ans++;
}
}
printf("%d\n", ans);
} int main()
{
solve();
return ;
}
Answer:
7295372

(Problem 73)Counting fractions in a range的更多相关文章

  1. (Problem 72)Counting fractions

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  2. (Problem 33)Digit canceling fractions

    The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplif ...

  3. (Problem 35)Circular primes

    The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, ...

  4. (Problem 57)Square root convergents

    It is possible to show that the square root of two can be expressed as an infinite continued fractio ...

  5. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  6. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  7. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  8. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  9. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

随机推荐

  1. jstack命令使用

    概述 jstack可用于导出java运用程序的线程堆栈.其基本使用语法为: jstack [-l] pid -l 选项用于打印锁的额外信息. 使用演示样例 以下这段代码执行之后会出现死锁现象(由于线程 ...

  2. 如何在Objective-C中实现链式语法?

    在接触到开源项目 Masonry 后,里面的布局约束的链式写法让我颇感兴趣,就像下面这样: 1 2 3 4 5 6 7 8 UIEdgeInsets padding = UIEdgeInsetsMak ...

  3. BZOJ 1407: [Noi2002]Savage( 数论 )

    枚举答案, 然后O(N^2)枚举野人去判他们是否会在有生之年存在同山洞. 具体做法就是: 设第x年相遇, 则 Ci+x*Pi=Cj+x*Pj (mod M), 然后解同余方程. 复杂度应该是O(ans ...

  4. URL伪静态设置 (apache2.4)

    ` ` 1.修改apche主配置文件 主要是 #LoadModule rewrite_module modules/mod_rewrite.so 改为 LoadModule rewrite_modul ...

  5. C#学习日志 day 4 ------ 类相关---this指针以及相关关键字

    c#中的类和java中的类没什么太大区别.但是c#有些特有的关键字以及属性使得c#具有一些特性. 首先就是this关键字,this在c++和java中都有,可以表示当前对象,以及变量所属对象等.例如 ...

  6. 【原创】JPEG图像密写研究(三) 数据流译码

    [原创]这次更新比较慢,译码过程比想象中复杂一些,更主要是译出来的DCT系数无法确定是否正确,要想验证就需要再进行正向压缩编码,再次形成jpeg图像验证正确,后续工作正在开展,这里就说一说译码的主要思 ...

  7. HDU 5820 Lights(扫描线+zkw线段树)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5820 [题目大意] 在一个大小为50000*50000的矩形中,有n个路灯. 询问是否每一对路灯之 ...

  8. POJ 3294 Life Forms(后缀数组+二分答案)

    [题目链接] http://poj.org/problem?id=3294 [题目大意] 求出在至少在一半字符串中出现的最长子串. 如果有多个符合的答案,请按照字典序输出. [题解] 将所有的字符串通 ...

  9. 转载ajax

    写在前面的话: 用了很久的Asp.Net Ajax,也看了段时间的jquery中ajax的应用,但到头来,居然想不起xmlHttpRequest的该如何使用了. 以前记的也不怎么清楚,这次就重新完整的 ...

  10. 新手不得不注意HTML CSS 规范

    作为一名新进的程序菜鸟,根本不知道从哪里开始学起好,前辈都说HTML CSS 规范是一个十分需要注意的点,要我记下,特地转来保存一下,大家相互学习 //总论 本规范既然一个开发规范,也是一个脚本语言参 ...