Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called a reduced proper fraction.

If we list the set of reduced proper fractions for d  8 in ascending order of size, we get:

1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8

It can be seen that there are 3 fractions between 1/3 and 1/2.

How many fractions lie between 1/3 and 1/2 in the sorted set of reduced proper fractions for d  12,000?

题目大意:

考虑分数 n/d, 其中n 和 d 是正整数。如果 nd 并且最大公约数 HCF(n,d)=1, 它被称作一个最简真分数。

如果我们将d  8的最简真分数按照大小的升序列出来,我们得到:

1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8

可以看出1/3和1/2之间共有3个分数。

在d  12,000的升序真分数列表中,1/3和1/2之间有多少个分数?

//(Problem 73)Counting fractions in a range
// Completed on Wed, 19 Feb 2014, 16:34
// Language: C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
#define N 12000 int gcd(int a, int b) //求最大公约数函数
{
int r;
while(b) {
r = a % b;
a = b;
b = r;
}
return a;
} void solve()
{
int a, b, i, j, ans;
ans = ;
for(i = ; i <= N; i++) {
a = i / ; b = i / ;
for(j = a + ; j < b + ; j++) {
if(gcd(i, j) == )
ans++;
}
}
printf("%d\n", ans);
} int main()
{
solve();
return ;
}
Answer:
7295372

(Problem 73)Counting fractions in a range的更多相关文章

  1. (Problem 72)Counting fractions

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  2. (Problem 33)Digit canceling fractions

    The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplif ...

  3. (Problem 35)Circular primes

    The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, ...

  4. (Problem 57)Square root convergents

    It is possible to show that the square root of two can be expressed as an infinite continued fractio ...

  5. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  6. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  7. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  8. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  9. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

随机推荐

  1. 怎样通过css的media属性,适配不同分辨率的终端设备?

    怎样通过css的media属性,适配不同分辨率的终端设备,示比例如以下: <!DOCTYPE html> <html> <head> <title>首页 ...

  2. 字符串分割--Java中String.split()用法

    转载自:http://blog.163.com/zs_note/blog/static/199386112201110804233558/ 在java.lang包中有String.split()方法, ...

  3. vue.js自定义指令入门

    Vue.js 允许你注册自定义指令,实质上是让你教 Vue 一些新技巧:怎样将数据的变化映射到 DOM 的行为.你可以使用Vue.directive(id, definition)的方法传入指令id和 ...

  4. jQ中prop与attr的区别

    1.prop适用于HTML元素本身就带有的固有属性 2.attr适用于HTML元素我们自定义的属性 <input type="checkbox" value="复选 ...

  5. [转载]Heritrix 提高效率的若干方法

    摘自http://blog.sina.com.cn/s/blog_6cc084c90100nf39.html --------------------------------------------- ...

  6. 关于CSS动画几点要注意的地方

    关于CSS动画几点要注意的地方 js操作transition无效果 先看这个demo以及stackoverflow的问题 http://jsfiddle.net/ThinkingStiff/QNnnQ ...

  7. MySQL 设置数据库的隔离级别

    在会话级别设置隔离级别 1.read commited :set session transaction isolation level read committed; 2.repeatable re ...

  8. 转: git常用命令

    # git配置 #---------------------------------------------- #配置用户名和邮箱: $ git config --global user.name & ...

  9. Turn the corner (三分)

    Turn the corner Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...

  10. uva 10026 Shoemaker's Problem(排序)

    题目连接:10026 Shoemaker's Problem 题目大意:有一个鞋匠接了n双要修的鞋子, 修每双鞋需要d天,每推迟一天修将亏损val元,问按什么样的顺序修鞋可以保证损失最少,如果有多种情 ...