(Problem 73)Counting fractions in a range
Consider the fraction, n/d, where n and d are positive integers. If n
d and HCF(n,d)=1, it is called a reduced proper fraction.
If we list the set of reduced proper fractions for d
8 in ascending order of size, we get:
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
It can be seen that there are 3 fractions between 1/3 and 1/2.
How many fractions lie between 1/3 and 1/2 in the sorted set of reduced proper fractions for d
12,000?
题目大意:
考虑分数 n/d, 其中n 和 d 是正整数。如果 n
d 并且最大公约数 HCF(n,d)=1, 它被称作一个最简真分数。
如果我们将d
8的最简真分数按照大小的升序列出来,我们得到:
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
可以看出1/3和1/2之间共有3个分数。
在d
12,000的升序真分数列表中,1/3和1/2之间有多少个分数?
//(Problem 73)Counting fractions in a range
// Completed on Wed, 19 Feb 2014, 16:34
// Language: C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
#define N 12000 int gcd(int a, int b) //求最大公约数函数
{
int r;
while(b) {
r = a % b;
a = b;
b = r;
}
return a;
} void solve()
{
int a, b, i, j, ans;
ans = ;
for(i = ; i <= N; i++) {
a = i / ; b = i / ;
for(j = a + ; j < b + ; j++) {
if(gcd(i, j) == )
ans++;
}
}
printf("%d\n", ans);
} int main()
{
solve();
return ;
}
|
Answer:
|
7295372 |
(Problem 73)Counting fractions in a range的更多相关文章
- (Problem 72)Counting fractions
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
- (Problem 33)Digit canceling fractions
The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplif ...
- (Problem 35)Circular primes
The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, ...
- (Problem 57)Square root convergents
It is possible to show that the square root of two can be expressed as an infinite continued fractio ...
- (Problem 42)Coded triangle numbers
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...
- (Problem 41)Pandigital prime
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...
- (Problem 70)Totient permutation
Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...
- (Problem 74)Digit factorial chains
The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...
- (Problem 46)Goldbach's other conjecture
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...
随机推荐
- 怎样通过css的media属性,适配不同分辨率的终端设备?
怎样通过css的media属性,适配不同分辨率的终端设备,示比例如以下: <!DOCTYPE html> <html> <head> <title>首页 ...
- 字符串分割--Java中String.split()用法
转载自:http://blog.163.com/zs_note/blog/static/199386112201110804233558/ 在java.lang包中有String.split()方法, ...
- vue.js自定义指令入门
Vue.js 允许你注册自定义指令,实质上是让你教 Vue 一些新技巧:怎样将数据的变化映射到 DOM 的行为.你可以使用Vue.directive(id, definition)的方法传入指令id和 ...
- jQ中prop与attr的区别
1.prop适用于HTML元素本身就带有的固有属性 2.attr适用于HTML元素我们自定义的属性 <input type="checkbox" value="复选 ...
- [转载]Heritrix 提高效率的若干方法
摘自http://blog.sina.com.cn/s/blog_6cc084c90100nf39.html --------------------------------------------- ...
- 关于CSS动画几点要注意的地方
关于CSS动画几点要注意的地方 js操作transition无效果 先看这个demo以及stackoverflow的问题 http://jsfiddle.net/ThinkingStiff/QNnnQ ...
- MySQL 设置数据库的隔离级别
在会话级别设置隔离级别 1.read commited :set session transaction isolation level read committed; 2.repeatable re ...
- 转: git常用命令
# git配置 #---------------------------------------------- #配置用户名和邮箱: $ git config --global user.name & ...
- Turn the corner (三分)
Turn the corner Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
- uva 10026 Shoemaker's Problem(排序)
题目连接:10026 Shoemaker's Problem 题目大意:有一个鞋匠接了n双要修的鞋子, 修每双鞋需要d天,每推迟一天修将亏损val元,问按什么样的顺序修鞋可以保证损失最少,如果有多种情 ...