原文链接:https://blog.csdn.net/weixin_39175124/article/details/79463993

数据在前处理的时候,经常会涉及到数据标准化。将现有的数据通过某种关系,映射到某一空间内。常用的标准化方式是,减去平均值,然后通过标准差映射到均至为0的空间内。系统会记录每个输入参数的平均数和标准差,以便数据可以还原。

很多ML的算法要求训练的输入参数的平均值是0并且有相同阶数的方差例如:RBF核的SVM,L1和L2正则的线性回归

sklearn.preprocessing.StandardScaler能够轻松的实现上述功能。

调用方式为: 
首先定义一个对象: 
ss = sklearn.preprocessing.StandardScaler(copy=True, with_mean=True, with_std=True) 
在这里 
copy; with_mean;with_std 
默认的值都是True.

copy 如果为false,就会用归一化的值替代原来的值;如果被标准化的数据不是np.array或scipy.sparse CSR matrix, 原来的数据还是被copy而不是被替代

with_mean 在处理sparse CSR或者 CSC matrices 一定要设置False不然会超内存

能够查询的属性:

scale_: 缩放比例,同时也是标准差

mean_: 每个特征的平均值

var_:每个特征的方差

n_sample_seen_:样本数量,可以通过patial_fit 增加

举个例子:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.preprocessing import StandardScaler
#data = pd.read_csv("C:/学习/python/creditcard/creditcard.csv")
x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]).reshape((3, 3))
ss = StandardScaler()
print(x)
ss.fit(X=x)
print(ss.n_samples_seen_)
print(ss.mean_)
print(ss.var_)
print(ss.scale_)
y = ss.fit_transform(x)
print(y)
z = ss.inverse_transform(y)
print(z)

运行结果为:

能够被调用的Methods:

fit(X,y=None):计算输入数据各特征的平均值,标准差以及之后的缩放系数 ,以后就可以按照这个数据调用transofrm()
X:训练集
y: 传入为了使得和Pipeline兼容

fit_transform(X,y=None,**fit_params): 通过fit_params调整数据X,y得到一个调整后的X ,使得每个特征的数据分布平均值为0,方差为1
X 为array:训练集 
y 为标签 
返回一个改变后的X

get_params(deep=True): 返回StandardScaler对象的设置参数,

inverse_transform(X,copy=None):顾名思义,就是按照缩放规律反向还原当前数据

transform(X, y=’deprecated’, copy=None):基于现有的对象规则,标准化新的参数

可以认为fit_transform()是fit()和transform()的合体。

sklearn.preprocessing.StandardScaler数据标准化的更多相关文章

  1. sklearn.preprocessing.StandardScaler 离线使用 不使用pickle如何做

    Having said that, you can query sklearn.preprocessing.StandardScaler for the fit parameters: scale_ ...

  2. sklearn preprocessing data(数据预处理)

    参考: http://scikit-learn.org/stable/modules/preprocessing.html

  3. Python数据预处理(sklearn.preprocessing)—归一化(MinMaxScaler),标准化(StandardScaler),正则化(Normalizer, normalize)

      关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常 ...

  4. 数据规范化——sklearn.preprocessing

    sklearn实现---归类为5大类 sklearn.preprocessing.scale()(最常用,易受异常值影响) sklearn.preprocessing.StandardScaler() ...

  5. sklearn中的数据预处理----good!! 标准化 归一化 在何时使用

    RESCALING attribute data to values to scale the range in [0, 1] or [−1, 1] is useful for the optimiz ...

  6. sklearn preprocessing (预处理)

    预处理的几种方法:标准化.数据最大最小缩放处理.正则化.特征二值化和数据缺失值处理. 知识回顾: p-范数:先算绝对值的p次方,再求和,再开p次方. 数据标准化:尽量将数据转化为均值为0,方差为1的数 ...

  7. sklearn中常用数据预处理方法

    1. 标准化(Standardization or Mean Removal and Variance Scaling) 变换后各维特征有0均值,单位方差.也叫z-score规范化(零均值规范化).计 ...

  8. 11.sklearn.preprocessing.LabelEncoder的作用

    In [5]: from sklearn import preprocessing ...: le =preprocessing.LabelEncoder() ...: le.fit(["p ...

  9. 【sklearn】数据预处理 sklearn.preprocessing

    数据预处理 标准化 (Standardization) 规范化(Normalization) 二值化 分类特征编码 推定缺失数据 生成多项式特征 定制转换器 1. 标准化Standardization ...

随机推荐

  1. java8 新用法

    /** * 得到优先级最高的集合 * @param list es查询结果 * @return */public List<Group> getMaxPriorityGroup(List& ...

  2. Mybaist 注解 foreach 嵌套循环实现批量插入

    第一种写法(#使用占位符推荐): @Insert("<script>" + " insert into ${tb} " +" <fo ...

  3. 字典树Trie--实现敏感词过滤

    序言 Trie树 资料 https://blog.csdn.net/m0_37907797/article/details/103272967?utm_source=apphttps://blog.c ...

  4. Android_(控件)Chronometer计时器

    Android Chronometer(计时器) 继承TextView,显示的是某个时间点开始以及之后的时间增加 运行截图 程序结构 package com.example.administrator ...

  5. sqli-labs(43)

    0X01和42关比起来 只是闭合变了 那么我们可以构造 ');insert into users values(98,'zhong','zhong')# 成功注入

  6. [CSP-S模拟测试]:统计(树状数组+乱搞)

    题目传送门(内部题120) 输入格式 第一行,两个正整数$n,m$. 第二行,$n$个正整数$a_1,a_2,...,a_n$,保证$1\leqslant a_i\leqslant n$,可能存在相同 ...

  7. ES6指北【1】——let、const

    1.如何学习ES6 1.1 js的学习顺序 ES5 -> ES6 -> ES7 -> ES8 以此类推 ES5没学好就别想学好ES6 1.2 边学边用 学了就要用 2.变量声明的方式 ...

  8. 关于JavaScript的内存机制

    一.背景 var a = 20; var b = 'abc'; var c = true; var d = { m: 20 } 因为JavaScript具有自动垃圾回收机制,所以对于前端开发来说,内存 ...

  9. python中的实例方法、类方法、静态方法的区别

    Python 除了拥有实例方法外,还拥有静态方法和类方法,跟Java相比需要理解这个类方法的含义. class Foo(object): def test(self)://定义了实例方法 print( ...

  10. Java期末课程学习汇总。

    本学期面向对象与Java程序设计课程已经结束了,给自己学习来个总结. 本学期过的非常快,不得不说这一学期学到的东西很少,感觉自己的进步很小. 而且感觉自己总少了点什么,在写这篇总结前,我认真想了,很多 ...