题目大意:

给定m n p 求下式

 

题解:https://blog.csdn.net/codeswarrior/article/details/81700226

莫比乌斯讲解:https://www.cnblogs.com/peng-ym/p/8647856.html

莫比乌斯的mu[]:https://www.cnblogs.com/cjyyb/p/7953803.html

#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define INF 0x3f3f3f3f
#define mem(i,j) memset(i,j,sizeof(i))
const int N=1e6+; LL mu[N], phi[N];
LL inv[N]; int n,m,p; void initinv() {
inv[]=;
for(int i=;i<N;i++)
inv[i]=inv[p%i]*(LL)(p-p/i)%p;
} // 逆元
void init() {
for(int i=;i<N;i++) phi[i]=i;
for(int i=;i<N;i++)
if(i==phi[i]) {
for(int j=i;j<N;j+=i)
phi[j]=phi[j]/i*(i-);
}
mem(mu,); mu[]=;
for(int i=;i<N;i++)
for(int j=i*;j<N;j+=i)
mu[j]-=mu[i];
} // 欧拉 莫比乌斯 LL moblus(int a,int b,int g) {
LL res=; a/=g,b/=g;
/// gcd(1~a,1~b)=g -> gcd(1~a/g,1~b/g)=1
for(int i=;i<=min(a,b);i++)
res+=(LL)mu[i]*(a/i)*(b/i);
/// mu[i] * (1~a,1~b)中[gcd=g或g的倍数]的数量
return res;
} int main()
{
init();
int t; scanf("%d",&t);
while(t--) {
scanf("%d%d%d",&m,&n,&p);
LL ans=; initinv();
for(int i=;i<=min(m,n);i++) {
LL uF=moblus(n,m,i)%p;
ans=(ans+uF*i%p*inv[phi[i]]%p)%p;
}
printf("%lld\n",ans);
} return ;
}

hdu6390 /// 欧拉函数+莫比乌斯反演 筛inv[] phi[] mu[]的更多相关文章

  1. 中国剩余定理 & 欧拉函数 & 莫比乌斯反演 & 狄利克雷卷积 & 杜教筛

    ssplaysecond的博客(请使用VPN访问): 中国剩余定理: https://ssplaysecond.blogspot.jp/2017/04/blog-post_6.html 欧拉函数: h ...

  2. 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】

    用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...

  3. UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)

    UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...

  4. 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)

    P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...

  5. ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)

    Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...

  6. BZOJ 2818 GCD 【欧拉函数 || 莫比乌斯反演】

    传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 2818: Gcd Time Limit: 10 Sec  Memory Limit ...

  7. bzoj 2818 Gcd(欧拉函数 | 莫比乌斯反演)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2818 [题意] 问(x,y)为质数的有序点对的数目. [思路一] 定义f[i]表示i之 ...

  8. 洛谷 - P3768 - 简单的数学题 - 欧拉函数 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P3768 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ijgcd(i ...

  9. 【bzoj4804】欧拉心算 莫比乌斯反演+莫比乌斯函数性质+线性筛

    Description 给出一个数字N 求\(\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(gcd(i,j))\) Input 第一行为一个正整数T,表示数据组数. 接下来T ...

随机推荐

  1. [ERR] 153 - Got a packet bigger than 'max_allowed_packet' bytes

    异常原因: 用客户端导入数据的时候,信息包过大 ,终止了数据导入,需要修改max_allowed_packet 参数 解决方案: 1. sql语句修改( ⚠️重启服务设置会失效) 登陆mysql查看当 ...

  2. Cocos2d-x之Scene

    |   版权声明:本文为博主原创文章,未经博主允许不得转载. Scene场景也是cocos2dx中必不可少的元素,游戏中通常我们需要构建不同的场景(至少一个),游戏里关卡.版块的切换也就是一个一个场景 ...

  3. Spingboot整合Redis,用注解(@Cacheable、@CacheEvict、@CachePut、@Caching)管理缓存

    背景:项目从头开始,需结合Springboot和Redis 需求:用注解管理缓存 方法:     一.用Redis取代Springboot原有缓存 1.pom引入依赖     2.applicatio ...

  4. mvnw简介

  5. InnoDB B树 锁

    InnoDB B树 叶子=>主键+数记录非叶子=>主键1+主键3...主键4 事务和行锁 索引项加锁 相等条件来访问更新数据,避免使用范围条件 (1)InnoDB的行销是基于索引实现的,如 ...

  6. BUUCTF MISC ZIP

    这道题有点烦,拿出来单独写先贴两张图,一会用 首先这题给了68个压缩包,每个压缩包里只有4bytes大小,于是可以想到是crc爆破,自己写的脚本总是被killed,犯懒找了个脚本 import zip ...

  7. 单核cpu实现多任务原理

  8. Vue中的作用域插槽

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  9. 每天一个Linux命令:ls(1)

    ls ls命令用于显示指定工作目录下之内容(列出目前工作目录所含之文件及子目录). 格式 ls [-alrtAFR] [name...] 参数选项 参数 备注 -a 列出目录下的所有文件,包括以 . ...

  10. Nginx缓存配置指南

    1.如何配置基本缓存设置 开启简单的缓存配置,只需要两个指令:proxy_cache_path和proxy_cache.proxy_cache_path配置缓存的存放地址和其他的一些常用配置,prox ...