第一周 Largest Rectangle in a Histogram
|
Language:
题目:
Largest Rectangle in a Histogram
Description A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles:
![]() Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram. Input The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1<=n<=100000. Then follow n integers h1,...,hn, where 0<=hi<=1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.
Output For
each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line. Sample Input 7 2 1 4 5 1 3 3 Sample Output 8 Hint Huge input, scanf is recommended.
Source |
思路:
我们把每个数字都看成一个宽度为1,长度为a[i]的小矩形,我们从左向右遍历每一个小矩形,然后以这个小矩形向左向右扩展,所能向左扩展的最大值(下标)用L[i]记录下来,所能扩张的最大值(下标)用R[i]记录下来,并把所能扩展最大的矩形面积a[i]*(R[i]-L[i])记录下来,每遍历一个小矩形就动态的经行更新最大值,然后最后输出最后的值即可。
便于理解的图文:
1) 刚开始栈中为空,压入下标0;然后当i=1时,2<=1不成立,下标出栈,栈变为空,计算此时面积res=2;

2)高度1,5,6是依次递增的,所以对应下标依次压入栈中;当i=4时,6>2,下标3出栈,所以计算此时的面积res=6,如图:

3)栈顶元素为2,其对应的高度为5>2(此时,还要和下标i=4的高度比较),所以,栈顶元素2出栈,计算面积为res=10;

4)因为栈顶元素为1,其对应的高度为1<2,满足条件,所以,将i入栈,直到i=6(为压入的0);此时栈中的元素为{1,4,5},有一个栈顶元素对应的高度大于i=6对应的高度,所以,5出栈,计算面积为3,其中最大面积为10;

5)栈顶元素为4,其对应高度为2>0,所以,2出栈,计算面积为4,最大面积为10;

6) 此时,栈顶元素为1,对应高度为1>0,所以,1出栈,因为1出栈以后,栈变为空,所以,计算面积的方式有变化,res=height[1]*6=6,最大面积为10。

代码1:(数组)
#include<iostream>
#include<stdio.h>
using namespace std;
typedef long long ll;
const int maxn = 1e5+;
ll a[maxn];
ll L[maxn],R[maxn];
int st[maxn];//栈的大小
int main(){
int n;
while(cin>>n&&n){
int t=;
for(int i = ;i < n;i++)
scanf("%lld",&a[i]);
for(int i=;i<n;i++){
while(t>&&a[st[t-]]>=a[i]) t--;
L[i] = t==?:(st[t-]+);
st[t++] = i;
}
t = ;
for(int i=n-;i>=;i--){
while(t>&&a[st[t-]]>=a[i]) t--;
R[i] =t ==?n:(st[t-]);
st[t++] = i;
}
ll res = ;
for(int i = ;i<n;i++){
res = max(res,a[i]*(R[i]-L[i]));
}
printf("%lld\n",res); }
return ;
}
代码2:(栈)
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<stack>
using namespace std;
typedef long long ll;
const int maxn = 1e5+;
ll h[maxn];
stack<int> s;
int main(){
int n;
while(cin>>n&&n){
memset(h,,sizeof(h));//每一组数据之前都需要初始化
while(!s.empty()) s.pop();//把栈中的元素清空
for(int i=;i<=n;i++)//i从1开始
scanf("%lld",&h[i]);
ll j=,res=;//h[]数组设为long long 类型后j也必须为long long型
while(j<=n+){//这里因为当j==n+1,是把栈中剩余的元素进行处理,例如样例中四个数全相同的时候还需最后处理一次,才能求出res的值
if(s.empty()||h[s.top()]<=h[j])
s.push(j++);
else{
ll t = s.top();
s.pop();
ll wid = s.empty()?(j-):(j-s.top()-);//这里因为第一个数组下标是从1开始的,所以当栈为空的时候,矩形的宽度必须为j-1
res = max(res,wid*h[t]);
}
}
cout<<res<<endl;
}
return ;
}
j-s.top()-1的含义:是所求矩形的宽,因为wid = L+R;
L = s.top()+1;//最左边的边界
R= j;//最右边的边界
这个栈的思路很巧,就是如果这个数符合栈中元素递增的规则或栈为空,则入栈
否则,就弹栈,这里是一个一个的弹栈操作,每弹出一个元素,就动态的更新res值,j不变,然后一直重复操作,直到栈顶元素<=要放入栈中的元素,那么就入栈
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <stack>
using namespace std; typedef long long ll;
ll h[]; stack<int> s; int main()
{
int n;
while (scanf("%d", &n)&&n) {
memset(h, , sizeof(h));
while(!s.empty()) s.pop();
for (int i = ; i < n; i++) //i从0开始
scanf("%lld", &h[i]); ll j = , res = ;
while (j<=n) {
if (s.empty()||h[s.top()]<=h[j])
s.push(j++);
else {
ll t = s.top(); s.pop();
ll wid = s.empty()?j:(j-s.top()-);
res = max(res, h[t]*wid);
}
}
printf("%lld\n", res);
}
}
第一周 Largest Rectangle in a Histogram的更多相关文章
- poj 2559 Largest Rectangle in a Histogram (单调栈)
http://poj.org/problem?id=2559 Largest Rectangle in a Histogram Time Limit: 1000MS Memory Limit: 6 ...
- POJ 2559 Largest Rectangle in a Histogram (单调栈或者dp)
Largest Rectangle in a Histogram Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 15831 ...
- hdu 1506 Largest Rectangle in a Histogram(单调栈)
L ...
- Largest Rectangle in a Histogram HDU - 1506 (单调栈)
A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rec ...
- po'j2559 Largest Rectangle in a Histogram 单调栈(递增)
Largest Rectangle in a Histogram Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 29498 ...
- [POJ 2559]Largest Rectangle in a Histogram 题解(单调栈)
[POJ 2559]Largest Rectangle in a Histogram Description A histogram is a polygon composed of a sequen ...
- Largest Rectangle in a Histogram (最大子矩阵)
hdu 1506 A histogram is a polygon composed of a sequence of rectangles aligned at a common base line ...
- NYOJ-258/POJ-2559/HDU-1506 Largest Rectangle in a Histogram,最大长方形,dp或者单调队列!
Largest Rectangle in a Histogram 这么经典的题硬是等今天碰到了原题现场懵逼两小时才会去补题.. ...
- [POJ2559&POJ3494] Largest Rectangle in a Histogram&Largest Submatrix of All 1’s 「单调栈」
Largest Rectangle in a Histogram http://poj.org/problem?id=2559 题意:给出若干宽度相同的矩形的高度(条形统计图),求最大子矩形面积 解题 ...
随机推荐
- 阻抗匹配 及 SI9000 使用
1. 阻抗匹配 1. 波长 * 频率 = 光速(3*10^8) 2. PCB走线什么时候需要做阻抗匹配? 不主要看频率,而关键是看信号的边沿陡峭程度,即信号的上升/下降时间,一般认为如果信号的上升/下 ...
- Linux中TLS
TLS(Thread Local Storage) 线程局部存储. 在Linux操作系统中,TLS保存成GDT中描述的一个段. 1: /* 2: * This creates a new proces ...
- 2019牛客多校第七场C-Governing sand(线段树+枚举)
Governing sand 题目传送门 解题思路 枚举每一种高度作为最大高度,则需要的最小花费的钱是:砍掉所有比这个高度高的树的所有花费+砍掉比这个高度低的树里最便宜的m棵树的花费,m为高度低的里面 ...
- css篇-简化版
[CSS篇]简化版 (1) CSS盒模型 CSS盒模型 题目:谈谈你对CSS盒模型的认识 1) 基本概念:标准模型+IE模型 2) 标准模型和IE模型的区别 计算宽度和 ...
- Pytest参数传递
import pytest@pytest.fixture()def login_r(open_browser):#调用login时,发现需要先打开浏览器,所以改成先打开浏览器,在登陆 print('输 ...
- 案例-3D旋转木马
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- CSS3新增(选择器{属性选择器,结构伪类选择器,伪元素选择器})
1.属性选择器 属性选择器,可以根据元素特定的属性来选择元素,这样就不用借助 类 或者 id选择器. E [ att ] 选择具有 att 属性的 E 元素 例如:input [ value ...
- Android开发:Handler的简单使用(一)
1.Handler是什么? 原文: A Handler allows you to send and process Message and Runnable objects associated w ...
- Arch安装墨刀(产品原型工具)
Arch通过aur安装墨刀的时候报错,查看PKGBUILD发现下载地址错误("https://s3.cn-north-1.amazonaws.com.cn/modao/download&qu ...
- 虚拟机linux系统 硬盘/root路径扩容
调整完后,重新打开虚拟机,使用fdisk -l查看,可以看到我们刚刚扩容的空间已经可以看到,但没有分区,还不能使用./dev/sda已经拥有了扩大的空间. 使用Linux的fdisk分区工具给磁盘/d ...
