题面太长了就不复制了,传送门

一道做了还是很懵逼的题目,感觉以后碰到类似的还是不会,果然HNOI题目很皮。

题解传送

补充一下吧。//感觉他的博客已经写得很好了......Orz 需要的可以两边一起看

1.期望的线性性质 \(E(x+y)=E(x)+E(y)\) //\(x,y\)是两个不同的事件

\(E(kx)=kE(x)\) //(k为常数)

2.单独考虑每张牌的概率的时候,影响其的只有他前面选了几张。

例如在前\(j\)轮里,在牌\(i\)(假设\(i>j\))前面有\(k\)张牌发动了(不包括\(i\))。

若\(k<j\),意味着还有牌在包括\(i\)的后面发动了,这时是不是我们考虑了\(i\)是否发动,所以会有概率做贡献

若\(k==j\),意味着j轮内发动的牌都在\(i\)前面,依题意,我们不会考虑\(i\)是否发动,所以不会有概率做贡献

大家尽量yy一下,语言表达能力有限

3.补充一下这里吧,自己看的时候感觉写的不是很清楚:

\(F[i][j]\)表示在所有\(r\)轮中,前\(i\)张卡一共出了\(j\)张的概率,那么就可以用\(O(n)\)的时间算出\(Fp[i](i>0)\)

枚举前\(i-1\)轮选了\(j\)张牌,那么有\(j\)轮不会考虑到第\(i\)张牌,也就是有\(r-j\)轮会考虑到第\(i\)张牌

//根据状态的定义,我们选了\(j\)张牌是不是意味着我们已经进行了\(j\)轮了,这时\(F[i-1][j]\)就意味着

在前\(i-1\)张牌中我们有\(j\)张发动了,根据题目条件,一旦发动回合结束,即前\(j\)轮根本就没机会来到第\(i\)张牌,所以剩下的\(r-j\)轮就会考虑到\(i\),会对\(Fp[i]\)做出贡献。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<algorithm>
using namespace std;
double p[221],f[221][133],all[221];
int d[221];
int main()
{
int t,n,r;
scanf("%d",&t);
while(t--)
{
memset(f,0,sizeof(f));
memset(all,0,sizeof(all));
scanf("%d%d",&n,&r);
for(int i=1;i<=n;i++)
{
scanf("%lf%d",&p[i],&d[i]);
}
f[0][0]=1;
for(int i=1;i<=n;i++)
{
for(int j=0;j<=r;j++)
{
f[i][j]+=f[i-1][j]*pow(1-p[i],r-j);
if(j>0) f[i][j]+=f[i-1][j-1]*(1-pow(1-p[i],r-j+1));
all[i]+=f[i-1][j]*(1-pow(1-p[i],r-j));
}
}
double ans=0;
for(int i=1;i<=n;i++)
{
ans+=all[i]*d[i];
}
printf("%.10lf\n",ans);
}
}

[HNOI2015]亚瑟王(概率dp)的更多相关文章

  1. P3239 [HNOI2015]亚瑟王——概率DP

    题面:亚瑟王 最近考试考期望很自闭啊,没做过这种类型的题,只能现在练一练: 所谓期望,就是状态乘上自己的概率:对于这道题来说,我们要求的是每张牌的伤害乘上打出的概率的和: 当然不是直接乘,因为给的是每 ...

  2. 【bzoj4008】[HNOI2015]亚瑟王 概率dp

    题目描述 $n$ 张牌,$r$ 轮游戏,每轮从左向右操作,遇到第 $i$ 张牌有 $p_i$ 的概率选中,选中会产生 $d_i$ 的贡献,丢弃掉该牌并结束这一轮,否则继续下一张.问最终的期望贡献. 输 ...

  3. P3239 [HNOI2015]亚瑟王 期望dp

    这个题一看就是期望dp,但是我有个问题,一个事件的期望等于他所有事件可能行乘权值的和吗...为什么我有天考试的时候就不对呢...求大佬解释一下. 至于这道题,f[i][j]代表前i个有j个发动技能,这 ...

  4. P3239 [HNOI2015]亚瑟王 期望 dp

    LINK:亚瑟王 Saber!Excalibur! 比较难的期望dp. 可以发现如果暴力枚举所有的局面复杂度很高 . 转换的思路则是 期望的线性性. 求出每张牌的期望累加即可. 考虑每张牌的期望=这张 ...

  5. BZOJ4008: [HNOI2015]亚瑟王(期望dp)

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 1952  Solved: 1159[Submit][Status] ...

  6. luoguP3239 [HNOI2015]亚瑟王 概率期望DP

    当初怎么想的来着.....又忘了...... 首先,总期望 = 每张卡片的期望之和 求期望,只要我们求出每张卡片被用掉的概率即可 如果直接上状态$f[i][j]$表示在第$i$轮中,第$j$张牌发动的 ...

  7. 【BZOJ4008】【HNOI2015】亚瑟王 概率DP

    链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...

  8. 洛谷 P3239 [HNOI2015]亚瑟王(期望dp)

    题面 luogu 题解 一道复杂的期望\(dp\) 思路来源:__stdcall 容易想到,只要把每张牌打出的概率算出来就可以求出\(ans\) 设\(fp[i]\)表示把第\(i\)张牌打出来的概率 ...

  9. BZOJ [HNOI2015]亚瑟王 ——期望DP

    发现每张卡牌最后起到作用只和是否打出去了有关. 而且每张牌打出去的概率和之前的牌打出去的情况有关. 所以我们按照牌的顺序进行DP. 然后记录$i$张牌中打出$j$张的概率,然后顺便统计答案. 直接对系 ...

  10. [HNOI2015]亚瑟王(期望+DP)

    题解 利用期望的线性性,可以把问题转化为求每一个卡牌造成期望的期望值. 然后我们就需要知道每一个卡牌发动技能的概率. 因为当某一张卡牌发动技能时这一轮会结束,这就很难直接计算了. 我们使用DP 设dp ...

随机推荐

  1. Minor GC、Major GC、Full GC 区别

    原创转载请注明出处:https://www.cnblogs.com/agilestyle/p/11488036.html Minor GC 清理年轻代 Minor GC指新生代GC,即发生在新生代(包 ...

  2. [BZOJ] 聚会

    问题描述 Y 岛风景美丽宜人,气候温和,物产丰富.Y 岛上有 N 个城市,有 N-1 条城市间的道路连接着它们.每一条道路都连接某两个城市.幸运的是,小可可通过这些道路可以走遍 Y岛的所有城市. 神奇 ...

  3. ueditor编辑器中从word中复制带图片的信息的操作演示

    我司需要做一个需求,就是使用富文本编辑器时,不要以上传附件的形式上传图片,而是以复制粘贴的形式上传图片. 在网上找了一下,有一个插件支持这个功能. WordPaster 安装方式如下: 直接使用Wor ...

  4. Delphi 清理程序内存

    procedure ClearMemory;begin        if Win32Platform = VER_PLATFORM_WIN32_NT then        begin        ...

  5. 攻防世界 | hello_pwn

    看样子是要让我们通过read(0, &unk_601068, 0x10uLL),读入 unk_601068 将 dword_60106C 覆盖 6c-68=4,所以: from pwn imp ...

  6. 6 October

    P1514 引水入城 题目描述 在一个遥远的国度,一侧是风景秀美的湖泊,另一侧则是漫无边际的沙漠.该国的行政区划十分特殊,刚好构成一个 \(N\) 行 \(\times M\) 列的矩形,如上图所示, ...

  7. [CSP-S模拟测试]:赛(贪心+三分)

    题目描述 由于出题人思维枯竭所以想不出好玩的背景.有$n$个物品,第$i$个物品的价格是$v_i$,有两个人,每个人都喜欢$n$个物品中的一些物品.要求选出正好$m$个物品,满足选出的物品中至少有$k ...

  8. (转)Python3 zip() 函数

    转:http://www.runoob.com/python3/python3-func-zip.html 描述 zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返 ...

  9. 【OPCAutomation】 使用OPCAutomation实现对OPC数据的访问

    折腾了一段时间研究OPC,理清了下位机.OPCServer 和OPCClient的关系和通信模型,终于能够来写一篇相关的博客了. 我们使用西门子的 S7 200 SMART作为下位机端,通过3G路由器 ...

  10. 大数据学习笔记之Zookeeper(三):Zookeeper理论篇(二)

    文章目录 3.1 数据结构 3.2 节点类型 3.3 特点 3.4 选举机制 3.5 stat结构体 3.6 监听器原理 3.1 数据结构 ZooKeeper数据模型的结构与Unix文件系统很类似,整 ...