之前实现过faster rcnn, 但是因为各种原因,有需要实现一次,而且发现许多博客都不全面。现在发现了一个比较全面的博客。自己根据这篇博客实现的也比较顺利。在此记录一下(照搬)。

原博客:https://blog.csdn.net/char_QwQ/article/details/80980505

文章代码连接:https://github.com/endernewton/tf-faster-rcnn

显卡:TiTan RTX/Qudro K2200(丽台k2200)。--我分别在两张显卡都实现过

Python 3.6 + TensorFlow-gpu 1.2.0rc2 + Cuda8.0 + Cudnn v5.1

一、克隆代码

git clone https://github.com/endernewton/tf-faster-rcnn.git

二、根据你的显卡更改下对应的计算单元

在tf-faster-rcnn/lib/setup.py的第130行。TiTan RTX对应的是sm_52, K2200对应的是sm_30。在这可以查看每种显卡对应的计算单元:http://arnon.dk/matching-sm-architectures-arch-and-gencode-for-various-nvidia-cards/

三、编译Cython

仍然在lib路径下,编译Cython模块(确保你已经安装了easydict, 如果没有,pip install easydict):

. make clean
. make
. cd ..

四、安装COCO API.

这点按照GitHub的步骤走就ok,没啥错误:

. cd data
. git clone https://github.com/pdollar/coco.git
. cd coco/PythonAPI
. make
. cd ../../..

五、下载数据:

Download the training, validation, test data and VOCdevkit

1. wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
2. wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
3. wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar

Extract all of these tars into one directory named VOCdevkit

. tar xvf VOCtrainval_06-Nov-.tar
. tar xvf VOCtest_06-Nov-.tar
. tar xvf VOCdevkit_08-Jun-.tar

It should have this basic structure

. $VOCdevkit/                               # development kit
. $VOCdevkit/VOCcode/ # VOC utility code
. $VOCdevkit/VOC2007 # image sets, annotations, etc.
. # ... and several other directories ...

Create symlinks for the PASCAL VOC dataset

. cd $FRCN_ROOT/data
. ln -s $VOCdevkit VOCdevkit2007

注:这里有个小问题,我的软连接似乎不起作用了,于是我直接把VOCdevkit文件拷贝到tf-faster-rnn/data路径下,并重命名为VOCdevkit2007,记得删除那个VOCdevkit的软连接。

六、下载预训练模型

需要翻墙,如果翻不了墙就从网盘下载吧。

链接:https://pan.baidu.com/s/1F8VfDKjlq9x42ZDrrvfx2A   密码:8ahl

七、建立预训练模型的软连接

在tf-faster-rcnn目录下建立output文件夹,并使用软连接来使用预训练模型,这里按照步骤走就行,没啥问题:

. NET=res101
. TRAIN_IMDB=voc_2007_trainval+voc_2012_trainval
. mkdir -p output/${NET}/${TRAIN_IMDB}
. cd output/${NET}/${TRAIN_IMDB}
. ln -s ../../../data/voc_2007_trainval+voc_2012_trainval ./default
. cd ../../..

 八、对一些图片进行测试。

仍然按步骤走:

. GPU_ID=
. CUDA_VISIBLE_DEVICES=${GPU_ID} ./tools/demo.py

九、 使用训练好的faster模型对数据进行测试。

这里有点地方需要修改:首先把tf-faster-rcnn/lib/datasets/voc_eval.py的第121行的

with open(cachefile,'w') as f

改成:

with open(cachefile,'wb') as f

同时还要把第105行的

cachefile = os.path.join(cachedir, '%s_annots.pkl' % imagesetfile)

改成:

cachefile = os.path.join(cachedir, '%s_annots.pkl' % imagesetfile.split("/")[-1].split(".")[0])

然后再按照步骤走就Ok了!

. GPU_ID=
. ./experiments/scripts/test_faster_rcnn.sh $GPU_ID pascal_voc_0712 res101

测试结果:

十、训练模型

这里按照步骤走可能会连不上外网,我把权重数据存网盘了。

网盘地址:https://pan.baidu.com/s/1aD0jlYGHhZQeeTvNJy0GGQ

密码:45ef

在data目录下创建一个imagenet_weights文件夹,解压权重数据并把解压后的vgg_16.ckpt重命名为vgg16.ckpy,因为后面在调用权重数据的时候需要对应的上。

开始训练(这里最后的vgg16就是对应的权重数据, 名字要对的上, 0是GPU的ID, pascal_voc是训练使用的数据集):

./experiments/scripts/train_faster_rcnn.sh  pascal_voc vgg16

为了节省时间并排除错误,我把迭代次数只设置了20次,把

./experiments/scripts/train_faster_rcnn.sh里的第22行把ITERS=70000改成ITERS=20,同时记得把./experiments/scripts/test_faster_rcnn.sh的ITERS也改成20.

注意:因为我使用的是pascal_voc数据集,所以只需要更改对应数据集的ITERS的就行了,训练和测试的都要改,因为在train_faster_rcnn.sh的末尾会执行test_faster_rcnn.sh

训练过程的loss:

训练结果:

可以看到结果很差,因为就迭代了20轮。

十一、替换自己的数据

  首先,在tf-faster-rcnn/lib/datasets目录下的pascal_voc.py里的第36行更改自己的类别,‘_background_'切记不可删掉,把后面的原来的20个label换成自己的,不用更改类别数目,也没有地方可以更改。

  然后把你的xml文件放置在tf-faster-rcnn/data/VOCdevkit2007/Annotations路径下,记得把原来的删掉;同时把你的jpg文件放在

tf-faster/rcnn/data/VOCdevkit2007/VOC2007/JPEGImages路径下,xml和jpg替换完了,现在该txt了,把之前生成的四个txt文档放在tf-faster-rcnn/data/VOCdevkit2007/VOC2007/ImageSets/Layout 和tf-faster-rcnn/data/VOCdevkit2007/VOC2007/ImageSets/Main。

  在开始训练之前,还需要把产生的模型以及cache删除掉,分别在tf-faster-rcnn/output/vgg16/voc_2007_trainval/default路径下和tf-faster-rcnn/data/cache路径下,然后就可以开始训练了:

./experiments/scripts/train_faster_rcnn.sh  pascal_voc vgg16

因为我只训练了20轮,所以效果很差,不过能跑通就行了。

python3 + Tensorflow + Faster R-CNN训练自己的数据的更多相关文章

  1. 基于Tensorflow + Opencv 实现CNN自定义图像分类

    摘要:本篇文章主要通过Tensorflow+Opencv实现CNN自定义图像分类案例,它能解决我们现实论文或实践中的图像分类问题,并与机器学习的图像分类算法进行对比实验. 本文分享自华为云社区< ...

  2. 写个神经网络,让她认得我`(๑•ᴗ•๑)(Tensorflow,opencv,dlib,cnn,人脸识别)

    训练一个神经网络 能让她认得我 阅读原文 这段时间正在学习tensorflow的卷积神经网络部分,为了对卷积神经网络能够有一个更深的了解,自己动手实现一个例程是比较好的方式,所以就选了一个这样比较有点 ...

  3. TensorFlow下利用MNIST训练模型识别手写数字

    本文将参考TensorFlow中文社区官方文档使用mnist数据集训练一个多层卷积神经网络(LeNet5网络),并利用所训练的模型识别自己手写数字. 训练MNIST数据集,并保存训练模型 # Pyth ...

  4. CNN tensorflow text classification CNN文本分类的例子

    from:http://deeplearning.lipingyang.org/tensorflow-examples-text/ TensorFlow examples (text-based) T ...

  5. faster r-cnn 在CPU配置下训练自己的数据

    因为没有GPU,所以在CPU下训练自己的数据,中间遇到了各种各样的坑,还好没有放弃,特以此文记录此过程. 1.在CPU下配置faster r-cnn,参考博客:http://blog.csdn.net ...

  6. R用户的福音︱TensorFlow:TensorFlow的R接口

    ------------------------------------------------------------ Matt︱R语言调用深度学习架构系列引文 R语言︱H2o深度学习的一些R语言实 ...

  7. tensorflow faster rann

    github 上大神的代码 https://github.com/endernewton/tf-faster-rcnn.git 在自己跑的过程中的问题: 1. 数据集的问题: 作者实现了 voc,co ...

  8. 用C++调用tensorflow在python下训练好的模型(centos7)

    本文主要参考博客https://blog.csdn.net/luoyexuge/article/details/80399265 [1] bazel安装参考:https://blog.csdn.net ...

  9. caffe学习三:使用Faster RCNN训练自己的数据

    本文假设你已经完成了安装,并可以运行demo.py 不会安装且用PASCAL VOC数据集的请看另来两篇博客. caffe学习一:ubuntu16.04下跑Faster R-CNN demo (基于c ...

随机推荐

  1. java:Hibernate框架1(环境搭建,Hibernate.cfg.xml中属性含义,Hibernate常用API对象,HibernteUitl,对象生命周期图,数据对象的三种状态,增删查改)

    1.环境搭建: 三个准备+7个步骤 准备1:新建项目并添加hibernate依赖的jar文件  准备2:在classpath下(src目录下)新建hibernate的配置文件:hibernate.cf ...

  2. Spring-QUARTZ定时任务demo

    Quartz定时任务demo下载: https://github.com/AliceSunCong/quartz 大致流程: **1.pom文件引入QUARTZ依赖** <dependency& ...

  3. jmeter监控服务器性能(windows系统)

    一.jmeter安装插件 前两个是jmeter插件,安装到本地的jmeter文件夹下第三个是放到服务器里的 jmeter插件官网地址:https://jmeter-plugins.org/ [我分享的 ...

  4. LeetCode.1051-身高检查器(Height Checker)

    这是小川的第390次更新,第420篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第252题(顺位题号是1051).要求学生按身高递增的顺序站列来拍年度照片. 返回没有站在 ...

  5. docker 安装 nexus

    docker pull sonatype/nexus3 用docker-compose 部署 创建目录 /usr/local/docker/nexus 在目录下 创建docker-compose.ym ...

  6. 2019JAVA第五次实验报告

    Java实验报告 班级 计科二班 学号 20188442 姓名 吴怡君 完成时间2019/10/11 评分等级 实验四 类的继承 实验目的 理解抽象类与接口的使用: 了解包的作用,掌握包的设计方法. ...

  7. solve update pip 10.0.0

    The bug is found in pip 10.0.0. In linux you need to modify file: /usr/bin/pip from: from pip import ...

  8. 吴恩达深度学习:2.15python中的广播

    1.Broadcasting example (1)下面矩阵描述了来自四种不同的100克碳水化合物,蛋白质和脂肪的卡路里数量 比如说100g苹果所含的热量有56克来自碳水化合物,相比之下来自蛋白质和脂 ...

  9. App原生、混合、纯WEB开发模式的优劣分析

    什么叫做原生App? 什么是混合app? 什么是Web App开发? Native App开发即我们所称的传统APP开发模式(原生APP开发模式),该开发针对IOS.Android等不同的手机操作系统 ...

  10. Docker下载镜像出现failed to register layer: symlink....问题

    在用Docker下载RabbitMQ的时候出现如下问题 个人解决方案:重启Docker. 若重启还是无法解决问题,可以先关闭Docker systemctl stop docker 然后把已下载的相关 ...