[Luogu1436]棋盘分割(动态规划)
[Luogu1436]棋盘分割
题目背景
无
题目描述
将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的两部分中的任意一块继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘。(每次切割都只能沿着棋盘格子的边进行)

原棋盘上每一格有一个分值,一块矩形棋盘的总分为其所含各格分值之和。现在需要把棋盘按上述规则分割成n块矩形棋盘,并使各矩形棋盘总分的平方和最小。
请编程对给出的棋盘及n,求出平方和的最小值。
输入输出格式
输入格式:
第1行为一个整数n(1 < n < 15)。
第2行至第9行每行为8个小于100的非负整数,表示棋盘上相应格子的分值。每行相邻两数之间用一个空格分隔。
输出格式:
仅一个数,为平方和。
输入输出样例
输入样例#1:
3
1 1 1 1 1 1 1 3
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 0 3
输出样例#1:
1460
最开始被告知这道题是区间dp,做完之后发现好像并没什么太大的关系,直接枚举就可以了。
\(F[i][x1][y1][x2][y2]\)表示矩形\((x1,y1),(x2y2)\)分成了i块后,获得的最大值。这里注意不能枚举矩阵中的小矩阵来转移,这样有可能会切重。所以我们直接枚举长和宽的断点来转移即可。
注意初始状态。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
int read()
{
int x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0') {if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
int n;
int a[15][15],sum[15][15];
int dp[16][11][11][11][11];
int get(int x1,int y1,int x2,int y2,int x3,int y3)
{
int d=(sum[x2][y2]-sum[x1-1][y2]-sum[x2][y1-1]-sum[x3][y3]+sum[x3][y1-1]+sum[x1-1][y3]);
return d*d;
}
void init()
{
for(int x1=1;x1<=8;x1++)
{
for(int y1=1;y1<=8;y1++)
{
for(int x2=x1;x2<=8;x2++)
{
for(int y2=y1;y2<=8;y2++)
{
int d=(sum[x2][y2]-sum[x1-1][y2]-sum[x2][y1-1]+sum[x1-1][y1-1]);
dp[1][x1][y1][x2][y2]=d*d;
}
}
}
}
}
int main()
{
memset(dp,0x3f,sizeof(dp));
n=read();
for(int i=1;i<=8;i++)
{
for(int j=1;j<=8;j++)
{
a[i][j]=read();
sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+a[i][j];
}
}
init();
for(int i=2;i<=n;i++)
{
for(int x1=1;x1<=8;x1++)
{
for(int y1=1;y1<=8;y1++)
{
for(int x2=x1;x2<=8;x2++)
{
for(int y2=y1;y2<=8;y2++)
{
for(int x3=x1;x3<x2;x3++)
dp[i][x1][y1][x2][y2]=min(dp[i][x1][y1][x2][y2],min(dp[i-1][x1][y1][x3][y2]+dp[1][x3+1][y1][x2][y2],dp[1][x1][y1][x3][y2]+dp[i-1][x3+1][y1][x2][y2]));
for(int y3=y1;y3<y2;y3++)
dp[i][x1][y1][x2][y2]=min(dp[i][x1][y1][x2][y2],min(dp[i-1][x1][y1][x2][y3]+dp[1][x1][y3+1][x2][y2],dp[1][x1][y1][x2][y3]+dp[i-1][x1][y3+1][x2][y2]));
}
}
}
}
}
cout<<dp[n][1][1][8][8];
}
[Luogu1436]棋盘分割(动态规划)的更多相关文章
- poj 1191 棋盘分割 动态规划
棋盘分割 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11457 Accepted: 4032 Description ...
- POJ 1191 棋盘分割
棋盘分割 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11213 Accepted: 3951 Description 将一个 ...
- NOI 193棋盘分割.cpp
193:棋盘分割 查看 提交 统计 提问 总时间限制: 1000ms 内存限制: 65536kB 描述 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分 ...
- HDU 2517 / POJ 1191 棋盘分割 区间DP / 记忆化搜索
题目链接: 黑书 P116 HDU 2157 棋盘分割 POJ 1191 棋盘分割 分析: 枚举所有可能的切割方法. 但如果用递归的方法要加上记忆搜索, 不能会超时... 代码: #include& ...
- POJ 1191棋盘分割问题
棋盘分割问题 题目大意,将一个棋盘分割成k-1个矩形,每个矩形都对应一个权值,让所有的权值最小求分法 很像区间DP,但是也不能说就是 我们只要想好了一个怎么变成两个,剩下的就好了,但是怎么变,就是变化 ...
- 洛谷 P1436 棋盘分割 解题报告
P1436 棋盘分割 题目描述 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的两部分中的任意一块继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共 ...
- [NOI1999] 棋盘分割
COGS 100. [NOI1999] 棋盘分割 http://www.cogs.pro/cogs/problem/problem.php?pid=100 ★★ 输入文件:division.in ...
- poj1191 棋盘分割【区间DP】【记忆化搜索】
棋盘分割 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16263 Accepted: 5812 Description ...
- POJ 1191 棋盘分割 【DFS记忆化搜索经典】
题目传送门:http://poj.org/problem?id=1191 棋盘分割 Time Limit: 1000MS Memory Limit: 10000K Total Submission ...
随机推荐
- RESTful风格编程
参考文档:http://blog.didispace.com/springbootrestfulapi/ https://www.jianshu.com/p/91600da4df95 *)RESTfu ...
- 最简单的flask项目详解
# 第一部分,初始化:所有的Flask都必须创建程序实例, # web服务器使用wsgi协议,把客户端所有的请求都转发给这个程序实例 # 程序实例是Flask的对象,一般情况下用如下方法实例化 # F ...
- mui初级入门教程(四)— 再谈webview,从小白变“大神”!
文章来源:小青年原创发布时间:2016-06-05关键词:mui,html5+,webview转载需标注本文原始地址: http://zhaomenghuan.github.io/#!/blog/20 ...
- p2619 [国家集训队2]Tree I [wqs二分学习]
分析 https://www.cnblogs.com/CreeperLKF/p/9045491.html 反正这个博客看起来很nb就对了 但是不知道他在说啥 实际上wqs二分就是原来的值dp[x]表示 ...
- awk调用系统命令
cmd = ("the linux command") cmd | getline dk; close(cmd) dk stores the output of the comma ...
- LinkedHashMap 源码分析
LinkedHashMap LinkedHashMap 能解决什么问题?什么时候使用 LinkedHashMap? 1)LinkedHashMap 按照键值对的插入顺序进行遍历,LinkedHashM ...
- Jmeter响应中中文乱码怎么解决?
在jmeter的bin目录下有一个jmeter.properties的文件,打开它,搜索sampleresult.default.encoding,把它的注释打开,也就是把最前面的#去掉,改成samp ...
- CentOS5.5配置Oracle监听 netca
在使用netca 配置监听时总是出现这个错误,即使更改了端口也会报错,,,也是在各种百度下, 找到了一个行之有效的办法: 在root下 step 1:netstat -a | grep 1521 确定 ...
- windows 使用 virtualbox,搭建 minikube 环境
win7 virtualbox 版本: 6.0.12 r133076 (Qt5.6.2) centos7:3.10.0-957.27.2.el7.x86_64 1. virtualbox 中创建 ce ...
- Nginx-Lua模块的执行顺序(转)
一.nginx执行步骤 nginx在处理每一个用户请求时,都是按照若干个不同的阶段依次处理的,与配置文件上的顺序没有关系,详细内容可以阅读<深入理解nginx:模块开发与架构解析>这本书, ...