luoguP1445 [Violet]樱花
链接P1445 [Violet]樱花
- 求方程 \(\frac {1}{X}+\frac {1}{Y}=\frac {1}{N!}\) 的正整数解的组数,其中\(N≤10^6\),模\(10^9+7\)。
- 化简单一下$$xy-n!(x+y)=0$$
- 因式分解一下$$(x-n!)*(y-n!)=(n!)^2$$
- 设\(a=x-n!,b=y-n!\),那么\(a*b=(n!)^2\)
- 也就是\(a,b\)对应了唯一一组\(x,y\),所以问题转化成了:求方程 \(a*b=(n!)^2\) 的正整数解的组数。
- 考虑唯一分解定理,$$(n!)^2=\prod p_i^{2*c_i}$$
- 所以线性筛后分解\(n!\),答案就是\(\prod (2*c_i+1)\)。
#include<bits/stdc++.h>
#define R register int
#define ll long long
using namespace std;
const int mod=1e9+7;
const int N=1000001;
int n,tot,ans,c[N],Mark[N],prm[N];
int gi(){
R x=0,k=1;char c=getchar();
while((c<'0'||c>'9')&&c!='-')c=getchar();
if(c=='-')k=-1,c=getchar();
while(c>='0'&&c<='9')x=(x<<3)+(x<<1)+c-'0',c=getchar();
return x*k;
}
int main(){
n=gi(),ans=1;
for(R i=2;i<=n;++i){
if(!Mark[i])prm[++tot]=i;
for(R j=1;j<=tot&&prm[j]*i<=n;++j){
Mark[prm[j]*i]=1;
if(i%prm[j]==0)break;
}
}
for(R p=1;p<=tot;++p){
R i=prm[p];
for(R j=i;j<=n;j+=i){
R x=j;
while(x%i==0)c[i]++,x/=i;
}
}
for(R i=1;i<=n;++i)c[i]=(c[i]<<1)+1;
for(R i=1;i<=n;++i)ans=1ll*ans*c[i]%mod;
cout<<ans<<endl;
return 0;
}
luoguP1445 [Violet]樱花的更多相关文章
- 「BZOJ2721」「LuoguP1445」 [Violet]樱花(数论
题目背景 我很愤怒 题目描述 求方程 $\frac{1}{x}+\frac{1}{y}=\frac{1}{N!}$ 的正整数解的组数,其中$N≤10^6$. 解的组数,应模$1e9+7$. 输入输出格 ...
- Luogu1445 [Violet]樱花 ---- 数论优化
Luogu1445 [Violet]樱花 一句话题意:(本来就是一句话的) 求方程 $\frac{1}{X} + \frac{1}{Y} = \frac{1}{N!}$ 的正整数解的组数,其中$N \ ...
- bzoj2721 / P1445 [Violet]樱花
P1445 [Violet]樱花 显然$x,y>n$ 那么我们可以设$a=n!,y=a+t(t>0)$ 再对原式通分一下$a(a+t)+ax=x(a+t)$ $a^{2}+at+ax=ax ...
- 洛谷P1445 [Violet] 樱花 (数学)
洛谷P1445 [Violet] 樱花 题目背景 我很愤怒 题目描述 求方程 1/X+1/Y=1/(N!) 的正整数解的组数,其中N≤10^6. 解的组数,应模1e9+7. 输入输出格式 输入格式: ...
- Luogu P1445[Violet]樱花/P4167 [Violet]樱花
Luogu P1445[Violet]樱花/P4167 [Violet]樱花 真·双倍经验 化简原式: $$\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}$$ $$\frac ...
- BZOJ2721或洛谷1445 [Violet]樱花
BZOJ原题链接 洛谷原题链接 其实推导很简单,只不过我太菜了想不到...又双叒叕去看题解 简单写下推导过程. 原方程:\[\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1 ...
- Luogu1445 [Violet]樱花
题面 题解 $$ \frac 1x + \frac 1y = \frac 1{n!} \\ \frac{x+y}{xy}=\frac 1{n!} \\ xy=n!(x+y) \\ xy-n!(x+y) ...
- Bzoj2721 [Violet]樱花(筛法)
题面 题解 首先化一下式子 $$ \frac 1x+\frac 1y=\frac 1{n!} \Rightarrow \frac {x+y}{xy}=\frac 1{n!} \Rightarrow ( ...
- [Violet]樱花
题目链接 洛谷 狗粮版 前置技能 初中基础的因式分解 线性筛 \(O(nlog)\)的分解质因数 唯一分解定理 题解 首先来分解一下式子 \[\frac{1}{x}+\frac{1}{y}=\frac ...
随机推荐
- Powershell + HTA
众所周知,Powershell早已被集成到了windows的环境中,国外大牛玩得不亦乐乎,而国内圈子却很少听到讨论Powershell的,HTA更不用说了,不是学计算机的或许根本不知道这是什么鬼 Li ...
- 基于jquery的bootstrap在线文本编辑器插件Summernote 简单强大
Summernote是一个基于jquery的bootstrap超级简单WYSIWYG在线编辑器.Summernote非常的轻量级,大小只有30KB,支持Safari,Chrome,Firefox.Op ...
- 阶段3 1.Mybatis_01.Mybatis课程介绍及环境搭建_03.jdbc操作数据库的问题分析
分析一段代码,传统的jdbc的功能,最终要实现的功能就是sql语句.
- Spring 初识
一.Spring是什么? 首先可以进入Spring官网 https://spring.io/ 看一下相关介绍. Spring为开发者提供了一站式的轻量级应用开发平台.简单来说,Spring为开发者提供 ...
- Service层获取HttpServletRequest request
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/liuyunshengsir/article/details/78183058HttpServletR ...
- 【MM系列】SAP OX09中的地址如何取
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]SAP OX09中的地址如何取 ...
- 【ABAP系列】SAP ABAP控制单元格是否可编辑
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP ABAP控制单元格是否可 ...
- 初学node.js-nodejs中实现用户登录路由
经过前面几次的学习,已经可以做下小功能,今天要实现的事用户登录路由. 一.users_model.js 功能:定义用户对象模型 var mongoose=require('mongoose'), S ...
- tensorflow学习之搭建最简单的神经网络
这几天在B站看莫烦的视频,学习一波,给出视频地址:https://www.bilibili.com/video/av16001891/?p=22 先放出代码 #####搭建神经网络测试 def add ...
- 【Qt开发】事件循环与线程 二
事件循环与线程 二 Qt 线程类 Qt对线程的支持已经有很多年了(发布于2000年九月22日的Qt2.2引入了QThread类),Qt 4.0版本的release则对其所有所支持平台默认地是对多线程支 ...