链接P1445 [Violet]樱花

  • 求方程 \(\frac {1}{X}+\frac {1}{Y}=\frac {1}{N!}\) 的正整数解的组数,其中\(N≤10^6\),模\(10^9+7\)。
  • 化简单一下$$xy-n!(x+y)=0$$
  • 因式分解一下$$(x-n!)*(y-n!)=(n!)^2$$
  • 设\(a=x-n!,b=y-n!\),那么\(a*b=(n!)^2\)
  • 也就是\(a,b\)对应了唯一一组\(x,y\),所以问题转化成了:求方程 \(a*b=(n!)^2\) 的正整数解的组数。
  • 考虑唯一分解定理,$$(n!)^2=\prod p_i^{2*c_i}$$
  • 所以线性筛后分解\(n!\),答案就是\(\prod (2*c_i+1)\)。
#include<bits/stdc++.h>
#define R register int
#define ll long long
using namespace std;
const int mod=1e9+7;
const int N=1000001;
int n,tot,ans,c[N],Mark[N],prm[N];
int gi(){
R x=0,k=1;char c=getchar();
while((c<'0'||c>'9')&&c!='-')c=getchar();
if(c=='-')k=-1,c=getchar();
while(c>='0'&&c<='9')x=(x<<3)+(x<<1)+c-'0',c=getchar();
return x*k;
}
int main(){
n=gi(),ans=1;
for(R i=2;i<=n;++i){
if(!Mark[i])prm[++tot]=i;
for(R j=1;j<=tot&&prm[j]*i<=n;++j){
Mark[prm[j]*i]=1;
if(i%prm[j]==0)break;
}
}
for(R p=1;p<=tot;++p){
R i=prm[p];
for(R j=i;j<=n;j+=i){
R x=j;
while(x%i==0)c[i]++,x/=i;
}
}
for(R i=1;i<=n;++i)c[i]=(c[i]<<1)+1;
for(R i=1;i<=n;++i)ans=1ll*ans*c[i]%mod;
cout<<ans<<endl;
return 0;
}

luoguP1445 [Violet]樱花的更多相关文章

  1. 「BZOJ2721」「LuoguP1445」 [Violet]樱花(数论

    题目背景 我很愤怒 题目描述 求方程 $\frac{1}{x}+\frac{1}{y}=\frac{1}{N!}$ 的正整数解的组数,其中$N≤10^6$. 解的组数,应模$1e9+7$. 输入输出格 ...

  2. Luogu1445 [Violet]樱花 ---- 数论优化

    Luogu1445 [Violet]樱花 一句话题意:(本来就是一句话的) 求方程 $\frac{1}{X} + \frac{1}{Y} = \frac{1}{N!}$ 的正整数解的组数,其中$N \ ...

  3. bzoj2721 / P1445 [Violet]樱花

    P1445 [Violet]樱花 显然$x,y>n$ 那么我们可以设$a=n!,y=a+t(t>0)$ 再对原式通分一下$a(a+t)+ax=x(a+t)$ $a^{2}+at+ax=ax ...

  4. 洛谷P1445 [Violet] 樱花 (数学)

    洛谷P1445 [Violet] 樱花 题目背景 我很愤怒 题目描述 求方程 1/X+1/Y=1/(N!) 的正整数解的组数,其中N≤10^6. 解的组数,应模1e9+7. 输入输出格式 输入格式: ...

  5. Luogu P1445[Violet]樱花/P4167 [Violet]樱花

    Luogu P1445[Violet]樱花/P4167 [Violet]樱花 真·双倍经验 化简原式: $$\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}$$ $$\frac ...

  6. BZOJ2721或洛谷1445 [Violet]樱花

    BZOJ原题链接 洛谷原题链接 其实推导很简单,只不过我太菜了想不到...又双叒叕去看题解 简单写下推导过程. 原方程:\[\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1 ...

  7. Luogu1445 [Violet]樱花

    题面 题解 $$ \frac 1x + \frac 1y = \frac 1{n!} \\ \frac{x+y}{xy}=\frac 1{n!} \\ xy=n!(x+y) \\ xy-n!(x+y) ...

  8. Bzoj2721 [Violet]樱花(筛法)

    题面 题解 首先化一下式子 $$ \frac 1x+\frac 1y=\frac 1{n!} \Rightarrow \frac {x+y}{xy}=\frac 1{n!} \Rightarrow ( ...

  9. [Violet]樱花

    题目链接 洛谷 狗粮版 前置技能 初中基础的因式分解 线性筛 \(O(nlog)\)的分解质因数 唯一分解定理 题解 首先来分解一下式子 \[\frac{1}{x}+\frac{1}{y}=\frac ...

随机推荐

  1. 五、SpringBoot—HelloWorld案例

    弱弱的补充一下啊,,,上一讲如果个别同学创建完项目之后发现项目pom.xml文件或者项目其他地方报错,你可以安装下图操作: HelloWorld案例: 编写好之后启动项目(贼姬霸简单) 启动成功: 浏 ...

  2. vim系统剪切板

    原文地址 1.vim常用复制粘贴命令 Vim的复制粘贴命令无疑是y (yank),p(paster),加上yy,P PS: vim有个很有意思的约定(我觉得是一种约定),就是某个命令的大小写都是实现某 ...

  3. EMQ插件通过HTTP连接认证服务器实现认证

    需求 在EMQ中添加认证插件,将到来的MQTT连接的ClientID.UserName.Password通过HTTP协议发送到认证服务器,用返回的数据决定是否允许该连接: 在连接时和断开时向服务器发送 ...

  4. 使用 Dom4j 对XML操作!!!

    转自:http://blog.csdn.net/redarmy_chen/article/details/12969219 dom4j是一个Java的XML API,类似于jdom,用来读写XML文件 ...

  5. 中国MOOC_面向对象程序设计——Java语言_第2周 对象交互_1有秒计时的数字时钟

    第2周编程题 查看帮助 返回   第2周编程题,在课程所给的时钟程序的基础上修改 依照学术诚信条款,我保证此作业是本人独立完成的. 温馨提示: 1.本次作业属于Online Judge题目,提交后由系 ...

  6. 学习 Node.js 的 6 个步骤

    第一步 对于刚接触Node.js的新手来说,第一步无非是打好基础,你需要弄明白以下事情: JavaScript 的特性和语法.假如你对 JavaScript 还不熟悉的话,推荐书籍及链接: JavaS ...

  7. LeetCode算法题-Most Common Word(Java实现)

    这是悦乐书的第321次更新,第342篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第190题(顺位题号是819).给定一个段落和一组禁止词,返回不在禁止词列表中的最常用词 ...

  8. P1118 [USACO06FEB]数字三角形`Backward Digit Su`… (dfs)

    https://www.luogu.org/problemnew/show/P1118 看的出来是个dfs 本来打算直接从下到上一顿搜索 但是不会 看了题解才知道系数是个杨辉三角....... 这样就 ...

  9. P1754球迷购票问题

    这是一道动态规划题,其实也是个数论题. 有n人拿50,有n人拿100买票,必须让50元的人买,不然无法找零钱,问最多有几种方案可以每一次都买票成功.这个题首先令人想到搜索,但是随即发现dp是正解,于是 ...

  10. D - Disjoint Set of Common Divisors

    https://atcoder.jp/contests/abc142/tasks/abc142_d 题意 求满足互素条件下的A和B的因子最多有几个 思路: 分解gcd(A,B)的质因子,再加上1: # ...