bzoj1002 轮状病毒 暴力打标找规律/基尔霍夫矩阵+高斯消元
基本思路:
1.先观察规律,写写画画未果
2.写程序暴力打表找规律,找出规律
1-15的答案:1 5 16 45 121
320 841 2205 5776 15125
39601 103680 271441 710645 1860496
第1、3、5、7...[奇数位]位是平方数 :
1*1 4*4 11*11 29*29 76*76 199*199 521*521...
第2、4、6、8...[偶数位]位除以5后也是平方数:
5*1*1 5*3*3 5*8*8 5*21*21 5*55*55 5*144*144 ...
奇数位:1 3 4 7 11 18 29 47 76...
偶数位:1 2 3 5 8 13 21 34 55...
这个跟一般的斐波那契数列的不同在于初始两个数的值不同以及间隔呈现斐波那契数列的规律
所以求解的时候可以分开来求,也可以整个一块求,整合起来就是F(n)= 3*F(n-1)- F(n+2)+ 2
至于最终的公式是怎么求出来的,我不会,但是有个网站,这上面你可以放有规律数列的前几项,它可以找出规律 https://www.wolframalpha.com/
3.正解是基尔霍夫矩阵,一种无相图转化为方阵并求出生成树个数的定理
证明我还没研究过,最近真的没什么时间,以后补上~
简单介绍下基尔霍夫矩阵:
- 对于一个无向图 G ,它的生成树个数等于其基尔霍夫Kirchhoff矩阵任何一个N-1阶主子式的行列式的绝对值。
- 所谓的N-1阶主子式就是对于一个任意的一个 r ,将矩阵的第 r 行和第 r 列同时删去得到的新矩阵。
- 基尔霍夫Kirchhoff矩阵的一种求法:基尔霍夫Kirchhoff矩阵 K =度数矩阵 D - 邻接矩阵 A,所以这个行列式的值可以用Gauss转换为三角行列式求值即可O(n^3)
- 度数矩阵D:是一个 N×N 的矩阵,其中
D[i][j]=0(i≠j)D[i][j]=0(i≠j),D[i][i]=i号点的度数D[i][i]=i号点的度数
- 邻接矩阵A:是一个 N×N 的矩阵,其中
A[i][i]=0,A[i][j]=A[j][i]=i,j之间的边数A[i][i]=0,A[i][j]=A[j][i]=i,j之间的边数
- 然后基尔霍夫Kirchhoff矩阵K=D-A
代码如下:
//暴力代码
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<string>
#include<algorithm>
#include<queue>
#include<vector>
#include<set> using namespace std; typedef long long ll;
typedef long long LL;
typedef pair<int,int> pii;
const int inf = 0x3f3f3f3f;
const int maxn = 200+10;
const ll mod = 1e9+9;
int ans,cnt,n;
int head[maxn],fa[maxn],vis[maxn];
struct Table{
int to,next;
bool ban;
}table[maxn<<2];
void add(int x,int y){
table[cnt].to=y;
table[cnt].next=head[x];
head[x]=cnt++;
}
bool bfs()
{
memset(fa,-1,sizeof(fa));
memset(vis,0,sizeof(vis));
queue<int>q;q.push(0);vis[0]=true;int tot=1;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i!=-1;i=table[i].next){
if(!table[i].ban){
int v=table[i].to;
if(v==fa[u]) continue;
if(vis[v]) return 0;
fa[v]=u;
vis[v]=1;
q.push(v);
tot++;
}
}
}
if(tot<=n) return 0;
else return 1;
}
void dfs(int x){
if((x<<1)>=cnt){
if(bfs()){
++ans;
}
return;
}
table[x<<1].ban=table[x<<1|1].ban=0;
dfs(x+1);
table[x<<1].ban=table[x<<1|1].ban=1;
dfs(x+1);
}
int main(){
int num;
scanf("%d",&num);
for(int i=1;i<=num;i++){
ans=0;cnt=0;n=i;
memset(head,-1,sizeof(head));
for(int j=1;j<=i;j++){
add(0,j);add(j,0);add(j,j%n+1);add(j%n+1,j);
}
dfs(0);
cout<<ans<<" ";
}
return 0;
}
//大数规律代码
#include<cstdio>
#include<cstring>
#include<algorithm> using namespace std; typedef long long ll;
const int inf = 0x3f3f3f3f;
const int maxn = 100+10; struct BigInteger{
int arr[maxn];
int len;
BigInteger(){
memset(arr,0,sizeof(arr));
len=0;
}
};
BigInteger Mul(BigInteger a,int k){
for(int i=1;i<=a.len;i++){
a.arr[i]*=k;
}
for(int i=1;i<=a.len;i++){
a.arr[i+1]+=a.arr[i]/10;
a.arr[i]%=10;
}
if(a.arr[a.len+1]!=0) a.len++;
return a;
}
BigInteger Sub(BigInteger a,BigInteger b){
a.arr[1]+=2;
int j=1;
while(a.arr[j]>=10){
a.arr[j+1]++;
a.arr[j]%=10;
j++;
}
//!!!
a.len=max(a.len,j);
for(int i=1;i<=a.len;i++){
a.arr[i]-=b.arr[i];
if(a.arr[i]<0){
a.arr[i]+=10;
a.arr[i+1]--;
}
}
while(a.arr[a.len]==0) a.len--;
return a;
}
int main(){
BigInteger f[maxn];
f[1].arr[1]=1;f[1].len=1;
f[2].arr[1]=5;f[2].len=1;
int n;
scanf("%d",&n);
for(int i=3;i<=n;i++){
f[i]=Sub(Mul(f[i-1],3),f[i-2]);
}
for(int i=f[n].len;i>0;i--){
printf("%d",f[n].arr[i]);
}
printf("\n");
return 0;
}
bzoj1002 轮状病毒 暴力打标找规律/基尔霍夫矩阵+高斯消元的更多相关文章
- bzoj 1002 [FJOI2007]轮状病毒 高精度&&找规律&&基尔霍夫矩阵
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2234 Solved: 1227[Submit][Statu ...
- BZOJ 1002: [FJOI2007]轮状病毒【生成树的计数与基尔霍夫矩阵简单讲解+高精度】
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5577 Solved: 3031[Submit][Statu ...
- BZOJ1002 FJOI2007 轮状病毒 【基尔霍夫矩阵+高精度】
BZOJ1002 FJOI2007 轮状病毒 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原 ...
- bzoj 1002 找规律(基尔霍夫矩阵)
网上说的是什么基尔霍夫矩阵,没学过这个,打个表找下规律,发现 w[i]=3*w[i-1]-w[i-2]+2; 然后写个高精直接递推就行了 //By BLADEVIL var n :longint; a ...
- [bzoj1002] [FJOI2007]轮状病毒轮状病毒(基尔霍夫矩阵)
Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子 和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下 ...
- bzoj1002: [FJOI2007]轮状病毒(基尔霍夫矩阵)
1002: [FJOI2007]轮状病毒 题目:传送门 题解: 决定开始板刷的第一题... 看到这题的时候想:这不就是求有多少种最小生成树的方式吗? 不会啊!!!%题解... 什么鬼?基尔霍夫矩阵?? ...
- 【BZOJ】1002:轮状病毒(基尔霍夫矩阵【附公式推导】或打表)
Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...
- BZOJ 4031 HEOI2015 小Z的房间 基尔霍夫矩阵+行列式+高斯消元 (附带行列式小结)
原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4031 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可 ...
- 无向图生成树计数 基尔霍夫矩阵 SPOJ Highways
基尔霍夫矩阵 https://blog.csdn.net/w4149/article/details/77387045 https://blog.csdn.net/qq_29963431/articl ...
随机推荐
- spring boot和邮件服务
1.运行环境 开发工具:intellij idea JDK版本:1.8 项目管理工具:Maven 4.0.0 2.GITHUB地址
- POJ 2391--Ombrophobic Bovines(最大流(拆点)+二分+最短路)
Ombrophobic Bovines Description FJ's cows really hate getting wet so much that the mere thought of g ...
- [SetPropertiesRule]{Server/Service/Engine/Host/Context} Setting property 'source' to 'org.eclipse.jst.j2ee.server:lovemu' did not find a matching property.
[SetPropertiesRule]{Server/Service/Engine/Host/Context} Setting property 'source' to 'org.eclipse.js ...
- 轮询,WebSocket和P2P--记一次QQ交谈IM
问题:
- selenium设定请求头
如果只是需要设定User-Agent可以用如下所示方式 dcap = dict(DesiredCapabilities.PHANTOMJS)dcap["phantomjs.page.sett ...
- 1207D Number Of Permutations
题目大意 给你n个二元组 问你有几种排列是的按两个关键字中的任意一个都不是不降排列的 分析 不妨容斥 我们先加上总的方案数$n!$ 之后我们按第一个关键字排序 因为值相同的情况下不影响答案 所以让总方 ...
- Vagrant 入门 - 启动 vagrant 及 通过 ssh 登录虚拟机
原文地址 在终端运行 vagrant up 命令即可启动 Vagrant 环境: $ vagrant up 不到一分钟,命令就会执行完毕,运行 Ubuntu 的虚拟机会启动成功.Vagrant 运行虚 ...
- PTA 1121 Damn Single
题目链接:1121 Damn Single (25 分) "Damn Single (单身狗)" is the Chinese nickname for someone who i ...
- waf学习
参考文章: http://drops.xmd5.com/static/drops/tips-7883.html waf种类 云waf 传统安全厂商的硬件waf以及一直存在ips,ids设备 主机防护软 ...
- thymeleaf 下拉选框回显选中
参考了许多,最后以这种方法实现了.尽管有些愚蠢,初步学习阶段.不知道为什么用th:field会报错.网上有些是用field来解决回显问题的. <select name="positio ...