题目链接:BZOJ - 2326

题目分析

数据范围达到了 10^18 ,显然需要矩阵乘法了!

可以发现,向数字尾部添加一个数字 x 的过程就是 Num = Num * 10^k + x 。其中 k 是 x 的位数。

那么位数相同的数字用矩阵乘法处理就可以了。

[Num, x, 1] * [10^k, 0, 0] = [Num*10^k+x, x+1, 1]

[      1, 0, 0]

[      0, 1, 1]

枚举位数,做多次矩阵乘法。

其中两个整数相乘可能会爆 LL ,那么就用类似快速幂的慢速乘。

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath> using namespace std; typedef long long LL; LL n, Mod; struct Matrix
{
int x, y;
LL A[5][5];
void Clear() {
memset(A, 0, sizeof(A));
}
void SetXY(int a, int b) {
x = a; y = b;
}
} M0, M_Ans, M_t; LL MulNum(LL a, LL b) {
LL f = a, ret = 0;
while (b) {
if (b & 1) {
ret += f;
if (ret > Mod) ret %= Mod;
}
b >>= 1;
f <<= 1;
if (f > Mod) f %= Mod;
}
return ret;
} Matrix Mul(Matrix Ma, Matrix Mb) {
Matrix ret;
ret.SetXY(Ma.x, Mb.y);
ret.Clear();
for (int i = 1; i <= ret.x; ++i) {
for (int j = 1; j <= ret.y; ++j) {
for (int k = 1; k <= Ma.y; ++k) {
ret.A[i][j] += MulNum(Ma.A[i][k], Mb.A[k][j]);
ret.A[i][j] %= Mod;
}
}
}
return ret;
} Matrix Pow(Matrix Ma, LL b) {
Matrix f, ret;
f = Ma;
ret.SetXY(Ma.x, Ma.y);
ret.Clear();
for (int i = 1; i <= ret.x; ++i) ret.A[i][i] = 1;
while (b) {
if (b & 1) ret = Mul(ret, f);
b >>= 1;
f = Mul(f, f);
}
return ret;
} int main()
{
scanf("%lld%lld", &n, &Mod);
LL Temp, Ans;
M0.SetXY(1, 3);
M0.Clear();
M0.A[1][1] = 0; M0.A[1][2] = 1; M0.A[1][3] = 1;
M_t.SetXY(3, 3);
Temp = 1;
for (int i = 1; i <= 18; ++i) {
Temp *= 10ll;
if (Temp > n) break;
M_t.Clear();
M_t.A[1][1] = Temp;
M_t.A[2][1] = M_t.A[2][2] = M_t.A[3][2] = M_t.A[3][3] = 1;
M_t = Pow(M_t, Temp - Temp / 10);
M0 = Mul(M0, M_t);
}
M_t.Clear();
M_t.A[1][1] = Temp;
M_t.A[2][1] = M_t.A[2][2] = M_t.A[3][2] = M_t.A[3][3] = 1;
M_t = Pow(M_t, n - Temp / 10 + 1);
M0 = Mul(M0, M_t);
Ans = M0.A[1][1];
printf("%lld\n", Ans);
return 0;
}

  

[BZOJ 2326] [HNOI2011] 数学作业 【矩阵乘法】的更多相关文章

  1. BZOJ 2326: [HNOI2011]数学作业(矩阵乘法)

    传送门 解题思路 NOIp前看到的一道题,当时想了很久没想出来,NOIp后拿出来看竟然想出来了.注意到有递推\(f[i]=f[i-1]*poww[i]+i\),\(f[i]\)表示\(1-i\)连接起 ...

  2. BZOJ 2326: [HNOI2011]数学作业( 矩阵快速幂 )

    BZOJ先剧透了是矩阵乘法...这道题显然可以f(x) = f(x-1)*10t+x ,其中t表示x有多少位. 这个递推式可以变成这样的矩阵...(不会用公式编辑器...), 我们把位数相同的一起处理 ...

  3. bzoj 2326: [HNOI2011]数学作业【dp+矩阵快速幂】

    矩阵乘法一般不满足交换律!!所以快速幂里需要注意乘的顺序!! 其实不难,设f[i]为i的答案,那么f[i]=(f[i-1]w[i]+i)%mod,w[i]是1e(i的位数),这个很容易写成矩阵的形式, ...

  4. bzoj 2326: [HNOI2011]数学作业

    #include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...

  5. [BZOJ2326] [HNOI2011] 数学作业 (矩阵乘法)

    Description Input Output Sample Input Sample Output HINT Source Solution 递推式长这样:$f[n]=f[n-1]*10^k+n$ ...

  6. 【bzoj2326】[HNOI2011]数学作业 矩阵乘法

    题目描述 题解 矩阵乘法 考虑把相同位数的数放到一起处理: 设有$k$位的数为$[l,r]$,那么枚举从大到小的第$i$个数(即枚举$r-i+1$),考虑其对$Concatenate(l..r)$的贡 ...

  7. BZOJ-2326 数学作业 矩阵乘法快速幂+快速乘

    2326: [HNOI2011]数学作业 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1564 Solved: 910 [Submit][Statu ...

  8. [HNOI2011]数学作业 --- 矩阵优化

    [HNOI2011]数学作业 题目描述: 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M ,要求计算\(Concatenate(1..N)\; Mod\; ...

  9. 【BZOJ2326】【HNOI2011】数学作业 [矩阵乘法][DP]

    数学作业 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Input 输入文件只有一行为用空 ...

随机推荐

  1. ajaxPro用法

    一.AjaxPro的使用 1.在项目中添加引用,浏览找到AjaxPro.2.dll文件 2.在Web.config中的system.web里面写入以下代码 </configuration> ...

  2. linux块设备IO栈浅析

    http://www.sysnote.org/2015/08/06/linux-io-stack/

  3. MapReduce实战:查找相同字母组成的单词

    1.项目需求 一本英文书籍包含成千上万个单词,现在我们需要在大量的单词中,找出相同字母组成的所有单词 2.数据集 下面是一本英文书籍截取的一部分单词内容(书籍内容是随意写的,主要目的是实现这种需求) ...

  4. Fix java version mismatch in windows---stackoverflow

    Question: I have the 64bit version of the jdk installed on windows 7. I installed the 32 bit version ...

  5. WebLogic Server的单点登陆功能--转载

    在WebLogic 8.1最新的 SP4版本中,最引人注目的要算是在安全方面,提供了用于和Microsoft Windows客户端进行Single Sign-On的Single Pass Negoti ...

  6. ArrayBlockingQueue 源码阅读 问题(一)

    今天阅读java.util.concurrent 中 ArrayBlockingQueue 的源码,发现其中有很多下面这行代码 final ReentrantLock lock = this.lock ...

  7. 第五篇:python基础之循环结构以及列表

    python基础之循环结构以及列表   python基础之编译器选择,循环结构,列表 本节内容 python IDE的选择 字符串的格式化输出 数据类型 循环结构 列表 简单购物车的编写 1.pyth ...

  8. 织梦dede编辑器ckeditor如何添加中文字体不乱码

    dedecms内容编辑器ckeditor没有中文字体,找了很多教程都是千篇一律,而且都是错的,终于找到了一篇,结合自己的实际操作,来教您如何添加中文字体,并且解决乱码问题.   工具/原料 dedec ...

  9. 委托、 Lambda表达式和事件——Lambda表达式

    /* * 由SharpDevelop创建. * 用户: David Huang * 日期: 2015/7/30 * 时间: 16:32 */ using System; namespace Lambd ...

  10. EntityFramework 中生成的类加注释

    EF5在生成实体类时获取不到数据库中表的说明字段,需要使用单独的t4模板来获取 下载文件 将文件与edmx 放同一文件夹 1.在生成类的t4模板中加入 <#@ include file=&quo ...