最长公共自序列LIS

三种模板,但是邝斌写的好像这题过不了

N*N

 #include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = ;
int a[],dp[],n;
int Lis(){
dp[]=;
int ans=;
int temp=;
for(int i=;i<=n;i++){
temp=;
for(int j=;j<i;j++){
if(dp[j]>temp&&a[i]>a[j]){
temp=dp[j];
}
}
dp[i]=temp+;
if(dp[i]>ans){
ans=dp[i];
}
}
return ans;
}
int main(){
while(~scanf("%d",&n)){
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
}
printf("%d\n",Lis());
}
return ;
}

N*logn

 #include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std; int a[],dp[],c[],n; int bin(int sizee,int k)
{
int l = ,r = sizee;
while(l<=r)
{
int mid = (l+r)/;
if(k>c[mid] && k<=c[mid+])
return mid+;
else if(k<c[mid])
r = mid-;
else
l = mid+;
}
} int LIS()
{
int i,j,ans=;
c[] = a[];
dp[] = ;
for(i = ; i<=n; i++)
{
if(a[i]<=c[])
j = ;
else if(a[i]>c[ans])
j = ++ans;
else
j = bin(ans,a[i]);
c[j] = a[i];
dp[i] = j;
}
return ans;
} int main()
{
int i;
while(~scanf("%d",&n))
{
for(i = ; i<=n; i++)
scanf("%d",&a[i]);
printf("%d\n",LIS()); }
return ;
}

没有AC

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#define clc(a,b) memset(a,b,sizeof(a))
#define LL long long
#include<cmath>
const int inf=0x3f3f3f3f;
using namespace std;
const int MAXN=;
int a[MAXN],b[MAXN];
int Serch(int num,int low,int high) {
int mid;
while(low<=high) {
mid=(low+high)/;
if(num>=b[mid])
low=mid+;
else high=mid-;
}
return low;
}
int Dp(int n) {
int i,len,pos;
b[]=a[];
len=;
for(i=; i<=n; i++) {
if(a[i]>=b[len]) {
len=len+;
b[len]=a[i];
} else {
pos=Serch(a[i],,len);
b[pos]=a[i];
}
}
return len;
} int main() {
int n;
while(~scanf("%d",&n)) {
for(int i=; i<=n; i++)
scanf("%d",&a[i]);
printf("%d\n",Dp(n));
}
}

POJ 2533 Longest Ordered Subsequence (LIS DP)的更多相关文章

  1. poj 2533 Longest Ordered Subsequence(线性dp)

    题目链接:http://poj.org/problem?id=2533 思路分析:该问题为经典的最长递增子序列问题,使用动态规划就可以解决: 1)状态定义:假设序列为A[0, 1, .., n],则定 ...

  2. POJ 2533 Longest Ordered Subsequence(LIS模版题)

    Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 47465   Acc ...

  3. Poj 2533 Longest Ordered Subsequence(LIS)

    一.Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequenc ...

  4. POJ 2533 Longest Ordered Subsequence(裸LIS)

    传送门: http://poj.org/problem?id=2533 Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 6 ...

  5. POJ 2533 Longest Ordered Subsequence(dp LIS)

    Language: Default Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submis ...

  6. 题解报告:poj 2533 Longest Ordered Subsequence(最长上升子序列LIS)

    Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence ...

  7. POJ 2533 Longest Ordered Subsequence(DP 最长上升子序列)

    Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 38980   Acc ...

  8. POJ 2533 Longest Ordered Subsequence(最长上升子序列(NlogN)

    传送门 Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subseque ...

  9. POJ 2533——Longest Ordered Subsequence(DP)

    链接:http://poj.org/problem?id=2533 题解 #include<iostream> using namespace std; ]; //存放数列 ]; //b[ ...

随机推荐

  1. python模块之os和os.path模块

    1.os模块os.listdir(dirname) 列出dirname下的目录和文件os.getcwd()函数得到当前工作目录,即当前Python脚本工作的目录路径.os.getenv()和os.pu ...

  2. C#细节忽略的问题:int 与 int?

    int 与 int? 天天都在看,却不知道这2有什么区别呢? 首先说明下这个?的由来吧:C#值类型使不可谓null的,但是sql server的 int 确是可以为null的. 废话不多说直接上代码 ...

  3. 对WPF中MeasureOverride 和ArrangeOverride 浅理解

    以前对MeasureOverride 和ArrangeOverride十分费解,看到了这篇博文茅塞顿开~ public class CustomControl1 : Panel { /// <s ...

  4. stm32类型cl、vl、xl、ld、md、hd的含义

    - startup_stm32f10x_ld_vl.s: for STM32 Low density Value line devices - startup_stm32f10x_ld.s: for ...

  5. python 常用模块(转载)

    转载地址:http://codeweblog.com/python-%e5%b8%b8%e7%94%a8%e6%a8%a1%e5%9d%97/ adodb:我们领导推荐的数据库连接组件bsddb3:B ...

  6. Python属性、方法和类管理系列之----元类

    元类的介绍 请看位于下面网址的一篇文章,写的相当好. http://blog.jobbole.com/21351/ 实例补充 class Meta(type): def __new__(meta, c ...

  7. Hansight

    http://www.hansight.com/scenarios.html#account

  8. java 对象 类 知识点 概览

    第30集 面向对象,核心是对象,以对象来思考

  9. [状压dp]经典TSP

    0出发 每个顶点经过一次 回到0 最小花费. O($n^2 \times 2^n$) 记忆化搜索: // s: 已经访问过的节点状态 v: 出发位置 int dfs(int s, int v) { ) ...

  10. RxJava开发精要1-从.NET到RxJava

    原文出自<RxJava Essentials> 原文作者 : Ivan Morgillo 译文出自 : 开发技术前线 www.devtf.cn 转载声明: 本译文已授权开发者头条享有独家转 ...