FFT —— 快速傅里叶变换
问题:
已知A[], B[], 求C[],使:

定义C是A,B的卷积,例如多项式乘法等。
朴素做法是按照定义枚举i和j,但这样时间复杂度是O(n2).
能不能使时间复杂度降下来呢?
点值表示法:
我们把A,B,C看作表达式。
即:
A(x)=a0 + a1* x + a2 * x2 +...
将A={(x1,A(x1)), (x2,A(x2)), (x3,A(x3))...}叫做A的点值表示法。
那么使用点值表示法做多项式乘法就很简单了:对应项相乘。
那么,如何将A和B转换成点值表示法,再将C转化回系数表示法(即最初的表示方法)呢?
如果任取n个点,按照定义计算,那么还是O(n2)的。
这样就要用到快速傅里叶变换。
快速傅里叶变换:
既然任取n个点,按照定义计算太慢,就要找一些特殊点。
我们用n个n次单位复数根(1的n次方根,涉及到复数,1的方根不止1和-1)来计算:
1的n次方根是
,其中i是虚数单位。
我们定义wn = e^(2∏i)是主n次单位根,那么所有n次单位复数根都是它的次方。
我们要求出A(wnk),就要采用分治思想。
我们将奇偶系数分离(先假设n为偶数),即定义
A1(x)=a0 + a2* x + a4 * x2 +...
A2(x)=a1 + a3* x + a5 * x2 +...
那么A(x)=A1(x2) + xA2(x2)。
要计算A(wnk)=A1((wnk)2) + wnkA2((wnk)2),
就要用到(wnk)2 = wn/2k mod (n / 2)(证略)。
所以A(wnk)=A1(wn/2k mod (n / 2)) + wnkA2(wn/2k mod (n / 2))
我们发现A1,A2都是n/2项的,且只需要算wn/2k的值,那么这就和开始的问题一样了,可以分治。
边界也很容易:n=1的时候A1本身就是值。
合并解。
A(wnk)=A1(wn/2k mod (n / 2)) + wnkA2(wn/2k mod (n / 2))
那么可以A(wnk)和A(wnk+n/2)一起算(0<=k<n/2):
设u = A1(wn/2k), t = wnkA2(wn/2k),
那么A(wnk) = u + t
A(wnk+n/2) = A1(wn/2k) + wnk + n/2 A2(wn/2k)
= A1(wn/2k) + wnk wnn/2 A2(wn/2k)
= A1(wn/2k) - wnk A2(wn/2k)
= u - t
所以这样就能算出A的点值表示法。
一个问题:分治要求n是2的幂,不是怎么办? 补0, 直到是2的幂。
剩下的问题:如何把C转化回系数表示法。
快速傅里叶逆变换:
我们把C做一遍快速傅立叶变换,只是求的是wnn, wnn-1, ..., wn1的值而不是wn0, wn1, ..., wnn-1的值,最后每一项除以n即可。
证略。
void Rader(complex y[],int len)
{
int i,j,k;
, j = len/;i < len-;i++)
{
if(i < j)swap(y[i],y[j]);
k = len/;
while( j >= k)
{
j -= k;
k /= ;
}
if(j < k)j += k;
}
}
void FFT(complex y[],int len,int on) //on = 1 快速傅里叶变换, on = -1 快速傅里叶逆变换
{
Rader(y,len);
;h <= len;h <<= )
{
complex wn(cos(-on**PI/h),sin(-on**PI/h)); //e^ki = cosk + isink
;j < len;j += h)
{
complex w(,);
;k++)
{
complex u = y[k];
complex t = w*y[k+h/];
y[k] = u+t;
y[k+h/] = u-t;
w = w*wn;
}
}
}
)
;i < len;i++)
y[i].r /= len;
}
39 //复数实现略
FFT —— 快速傅里叶变换的更多相关文章
- FFT 快速傅里叶变换 学习笔记
FFT 快速傅里叶变换 前言 lmc,ikka,attack等众多大佬都没教会的我终于要自己填坑了. 又是机房里最后一个学fft的人 早背过圆周率50位填坑了 用处 多项式乘法 卷积 \(g(x)=a ...
- CQOI2018 九连环 打表找规律 fft快速傅里叶变换
题面: CQOI2018九连环 分析: 个人认为这道题没有什么价值,纯粹是为了考算法而考算法. 对于小数据我们可以直接爆搜打表,打表出来我们可以观察规律. f[1~10]: 1 2 5 10 21 4 ...
- 「学习笔记」FFT 快速傅里叶变换
目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...
- [C++] 频谱图中 FFT快速傅里叶变换C++实现
在项目中,需要画波形频谱图,因此进行查找,不是很懂相关知识,下列代码主要是针对这篇文章. http://blog.csdn.net/xcgspring/article/details/4749075 ...
- matlab中fft快速傅里叶变换
视频来源:https://www.bilibili.com/video/av51932171?t=628. 博文来源:https://ww2.mathworks.cn/help/matlab/ref/ ...
- FFT快速傅里叶变换算法
1.FFT算法概要: FFT(Fast Fourier Transformation)是离散傅氏变换(DFT)的快速算法.即为快速傅氏变换.它是根据离散傅氏变换的奇.偶.虚.实等特性,对离散傅立叶变换 ...
- FFT快速傅里叶变换
FFT太玄幻了,不过我要先膜拜HQM,实在太强了 1.多项式 1)多项式的定义 在数学中,由若干个单项式相加组成的代数式叫做多项式.多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这 ...
- [学习笔记]FFT——快速傅里叶变换
大力推荐博客: 傅里叶变换(FFT)学习笔记 一.多项式乘法: 我们要明白的是: FFT利用分治,处理多项式乘法,达到O(nlogn)的复杂度.(虽然常数大) FFT=DFT+IDFT DFT: 本质 ...
- FFT(快速傅里叶变换)
学习了FFT用来求多项式的乘法,看了算导上的介绍,上面讲的非常明白,概括一下FFT的原理就是,我们在计算多项式的乘法时,如果暴力模拟的话是n^2 复杂度的,就像小学学的竖式乘法一样,比如一个n位数乘上 ...
随机推荐
- cmder使用手册
http://bliker.github.io/cmder/ 使其可以在Win+R中运行 将解压出的路径 放入系统变量 path中 如 :D:\software\cmder 解决中文错位 选个喜欢的字 ...
- Storm系列(二十)分区事务PartitionTransaction及示例
在Storm中分区事务的处理,Spout端需要实现IPartitionedTransactionalSpout接口,用于对批次及偏移量的控制,而Bolt都必须实现IBatchBolt接口,通常继承至B ...
- JQuery Dialog 禁用X按钮关闭对话框,-摘自网络
JQuery Dialog 禁用X按钮关闭对话框,禁用ESC键关闭代码如下:$("#div1").dialog({ closeOnEscape: false, open: ...
- 利用gdb 调试android jni c动态库
http://blog.dornea.nu/2015/07/01/debugging-android-native-shared-libraries/ Since I haven't done thi ...
- git 初级
以前工作中用到git,但没有总结,这次借鉴其它博客加上自己实践,总结git的简单用法 首先安装.... 打开一个文件右击git bash 弹出来一个jit界面 git config http.post ...
- cocos2d-x触摸事件优先级的探究与实践
如何让自定义Layer触发触摸事件? bool LayerXXX::init() { this->setTouchEnabled(true); CCTouchDispatcher* td = C ...
- Mac下安装cocos2d-x环境
安装后xcode之后,下载cocos2dx压缩包,解压 通过中断cd到cocos2dx文件夹内 输入下行命令 sudo ./install-templates-xcode.sh 执行成功后打开xcod ...
- SpringMVC + ehcache( ehcache-spring-annotations)基于注解的服务器端数据缓存
背景 声明,如果你不关心java缓存解决方案的全貌,只是急着解决问题,请略过背景部分. 在互联网应用中,由于并发量比传统的企业级应用会高出很多,所以处理大并发的问题就显得尤为重要.在硬件资源一定的情况 ...
- android弧形进度条,有详细注释的,比较简单
Java code? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 ...
- android113 自定义进度条
MainActivity: package com.itheima.monitor; import android.os.Bundle; import android.app.Activity; im ...