题意:

求出度为0的强连通分量.

思路:

缩点

具体有两种实现:

1.遍历所有边, 边的两端点不在同一强连通分量的话, 将出发点所在强连通分量出度+1.

#include <cstdio>
#include <cstring>
#include <stack>
#include <algorithm>
using namespace std;
//0.03s 4856K
const int MAXN = 5005;
struct Pool
{
int pre, v;
}p[MAXN*100];//适当开
int num,head[MAXN];
int low[MAXN];
int dfn[MAXN],Index;
int id[MAXN],size;
bool vis[MAXN];
stack<int> s;
int n,m;
int deg[MAXN]; void clear()
{
num = 1;//求邻边,异或方便,从2开始
memset(head,0,sizeof(head));
memset(vis,false,sizeof(vis));
memset(low,0,sizeof(low));
memset(dfn,0,sizeof(dfn));
memset(deg,0,sizeof(deg));
Index = size = 0;
while(!s.empty()) s.pop();
} void add(int u, int v)
{
p[++num].v = v;
p[num].pre = head[u];//pre为0,说明该边为第一条边
head[u] = num;
} void Tarjan(int u)
{
dfn[u] = low[u] = ++Index;
s.push(u);
vis[u] = true;
for(int tmp = head[u],k;k = p[tmp].v,tmp; tmp = p[tmp].pre)
{
if(!dfn[k])
{
Tarjan(k);
low[u] = min(low[u], low[k]);
}
else if(vis[k])
{
low[u] = min(low[u], low[k]);
///low[u] = min(low[u], dfn[k]);这两种都可以啦~
}
} if(dfn[u]==low[u])
{
size++;
int k;
do
{
k = s.top(); s.pop();
vis[k] = false;
id[k] = size;
}while(k!=u);
}
} void cal()
{
for(int i=1;i<=n;i++)
{
for(int tmp = head[i],k;k = p[tmp].v,tmp; tmp = p[tmp].pre)
{
if(id[i]!=id[k])
{
deg[id[i]]++;
}
}
}
} int main()
{
while(scanf("%d",&n),n)
{
clear();
scanf("%d",&m);
for(int i=0,u,v;i<m;i++)
{
scanf("%d %d",&u,&v);
add(u,v);
}
for(int i=1;i<=n;i++)
{
if(!dfn[i])
Tarjan(i);
}
cal();
bool blank = false;
for(int i=1;i<=n;i++)
{
if(!deg[id[i]])
{
if(!blank)
{
printf("%d",i);
blank = true;
}
else
printf(" %d",i);
}
}
printf("\n");
}
}

2. 在dfs的过程中,标记出度.

设当前节点为u

若访问到了黑色点, 则出度不为0.

若访问到了灰色点, 正常

若访问到了白色点, 则这个白色点k

若被搜索之后属于同一强连通分量,则low[ k ] < dfn[ k ] (注意,并不一定有 low[ k ] < low[ u ], 因为k可能连接到了较靠后的灰色点,而u之前已经被较靠前的灰色点更新过).

若被搜索之后属于另一个(不同于u的)强连通分量, 那么可以证明 low[ k ] == dfn[ k ], 即k一定是入口.

黑体字的两条就包括了所有出度非0的情况. 据此来实现缩点.

#include <cstdio>
#include <cstring>
#include <stack>
#include <algorithm>
using namespace std;
//0.03s 4812K
const int MAXN = 5005;
struct Pool
{
int pre, v;
}p[MAXN*100];//适当开
int num,head[MAXN];
int low[MAXN];
int dfn[MAXN],Index;
int id[MAXN],size;
bool vis[MAXN];
stack<int> s;
int n,m;
bool black[MAXN];
bool odd[MAXN]; void clear()
{
num = 1;
memset(head,0,sizeof(head));
memset(vis,false,sizeof(vis));
memset(low,0,sizeof(low));
memset(dfn,0,sizeof(dfn));
memset(black,false,sizeof(black));
memset(odd,false,sizeof(odd));
Index = size = 0;
while(!s.empty()) s.pop();
} void add(int u, int v)
{
p[++num].v = v;
p[num].pre = head[u];
head[u] = num;
} void Tarjan(int u)
{
dfn[u] = low[u] = ++Index;
s.push(u);
vis[u] = true;
for(int tmp = head[u],k;k = p[tmp].v,tmp; tmp = p[tmp].pre)
{
if(!dfn[k])
{
Tarjan(k);
if(low[k]==dfn[k])///如果访问到了白色点,那么新的强连通分量的入口一定在这个点
black[u] = true;
low[u] = min(low[u], low[k]);
}
else if(vis[k])
{
low[u] = min(low[u], low[k]);
}
else
black[u] = true;
}///low只是指"当前找到的强连通分量的进入时间戳"
///而非"极大强连通分量"的进入时间戳.但是肯定小于自己的时间戳(恰好是进入点的话就是等于).
if(dfn[u]==low[u])
{
size++;
int k;
do
{
k = s.top(); s.pop();
vis[k] = false;
id[k] = size;
if(black[k])
odd[size] = true;
}while(k!=u);
}
} int main()
{
while(scanf("%d",&n),n)
{
clear();
scanf("%d",&m);
for(int i=0,u,v;i<m;i++)
{
scanf("%d %d",&u,&v);
add(u,v);
}
for(int i=1;i<=n;i++)
{
if(!dfn[i])
Tarjan(i);
}
bool blank = false;
for(int i=1;i<=n;i++)
{
if(!odd[id[i]])
{
if(!blank)
{
printf("%d",i);
blank = true;
}
else
printf(" %d",i);
}
}
printf("\n");
}
}

[poj 2553]The Bottom of a Graph[Tarjan强连通分量]的更多相关文章

  1. POJ 2553 The Bottom of a Graph(强连通分量)

    POJ 2553 The Bottom of a Graph 题目链接 题意:给定一个有向图,求出度为0的强连通分量 思路:缩点搞就可以 代码: #include <cstdio> #in ...

  2. poj 2553 The Bottom of a Graph【强连通分量求汇点个数】

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 9641   Accepted:  ...

  3. POJ 2553 The Bottom of a Graph(强连通分量的出度)

    题意: 求出图中所有汇点 定义:点v是汇点须满足 --- 对图中任意点u,若v可以到达u则必有u到v的路径:若v不可以到达u,则u到v的路径可有可无. 模板:http://www.cnblogs.co ...

  4. POJ 2553 The Bottom of a Graph (Tarjan)

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 11981   Accepted: ...

  5. POJ 2553 The Bottom of a Graph Tarjan找环缩点(题解解释输入)

    Description We will use the following (standard) definitions from graph theory. Let V be a nonempty ...

  6. POJ 2553 The Bottom of a Graph TarJan算法题解

    本题分两步: 1 使用Tarjan算法求全部最大子强连通图.而且标志出来 2 然后遍历这些节点看是否有出射的边,没有的顶点所在的子强连通图的全部点,都是解集. Tarjan算法就是模板算法了. 这里使 ...

  7. poj 2553 The Bottom of a Graph(强连通、缩点、出入度)

    题意:给出一个有向图G,寻找所有的sink点.“sink”的定义为:{v∈V|∀w∈V:(v→w)⇒(w→v)},对于一个点v,所有能到达的所有节点w,都能够回到v,这样的点v称为sink. 分析:由 ...

  8. poj 2553 The Bottom of a Graph(强连通分量+缩点)

    题目地址:http://poj.org/problem?id=2553 The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K ...

  9. POJ 2553 The Bottom of a Graph 【scc tarjan】

    图论之强连通复习开始- - 题目大意:给你一个有向图,要你求出这样的点集:从这个点出发能到达的点,一定能回到这个点 思路:强连通分量里的显然都可以互相到达 那就一起考虑,缩点后如果一个点有出边,一定不 ...

随机推荐

  1. linux centos cli all proxy

    linux centos 下代理http.https.ftp.all_proxy 全局使用代理: export http_proxy=http://host:port/ export https_pr ...

  2. rownum

    rownum是一个伪列,oracle数据库会对查找到的数据 从1 开始递增指定每行的rownum值, 当查询条件里有 rownum时(比如 where rownum>2),数据库会依次从数据集里 ...

  3. 几个 JavaScript 奇技淫巧

    #1使用双等号给布尔变量赋值,很容易联想到 var a = b || 123; 的写法 var a = b == 123;#2快速转换为布尔值 !!a#3防止页面被 iframe 调用 if(top ...

  4. PHP全局变量

    1.global 关键字 2.$GLOBALS 3.使用静态变量

  5. html 5 中的 6位 十六进制颜色码 代表的意思

    人的眼睛看到的颜色有两种: ⒈ 一种是发光体发出的颜色,比如计算机显示器屏幕显示的颜色: ⒉ 另一种是物体本身不发光,而是反射的光产生 十六进制颜色码 的颜色,比如看报纸和杂志上的颜色. 我们又知道任 ...

  6. bzoj 3781: 小B的询问 分块

    3781: 小B的询问 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 196  Solved: 135[Submit][Status] Descrip ...

  7. 快速搭建PHP开发环境(PhpStorm+EasyPHP)

    写在开头,何为PHP(拍黄片)? P HP是一种开源的通用计算机脚本语言,尤其适用于网络开发并可嵌入HTML中使用(维基百科). 从上我们得出,何为PHP? 1.开源脚本语言. 2.用于网络开发可嵌入 ...

  8. Python Web 性能和压力测试 multi-mechanize

    http://www.aikaiyuan.com/5318.html 对Web服务做Performance & Load测试,最常见的工具有Apache Benchmark俗称ab和商用工具L ...

  9. 今天,安装了一个GANGLIA玩玩,以后再测试NAGIOS吧。

    说不定以后派得上用场呢.. 还有,NGINX也要学,不能老是凭站IIS,APACHE混饭吃吧,现在它都这么流行了..新浪,网易,腾讯.

  10. 为网站添加一个图标icon

    <link rel="icon" href="/favicon.ico" type="image/x-icon"/> <l ...